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ABSTRACT

Data that correspond to real-world scenarios can often be organized
in several different ways in a database or program. Appreciating
the differences between them and choosing an organization that
addresses a system’s needs are valuable and necessary computing
skills. Unfortunately, little of the computing-education literature
seems to deal with this topic.

In this paper we consider a technique for getting students to
engage with this issue, grounded in theories of examples and dif-
ferences. Instead of presenting a single organization, we present a
pair of organizations and ask students to contrast them. Students
then interact directly with the two organizations in a reflection
step, which is followed by a further round of contrasting.

Our data show that even novice college students can handle
this task fairly well. They are able to find many crucial differences
(especially in terms of access and update operations), but also miss
some (especially performance and privacy). These data suggest that
this is a useful technique to pursue further, and also point to areas
where students may need more instructional support.
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1 INTRODUCTION

Imagine you are asked to design a system to capture information
about a sports (cricket!) competition. On a little reflection, you re-
alize there are multiple different ways to organize this information,
which may be manifest as programming language data structures,
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database schemas, etc. You could choose an organization that prior-
itizes teams, such as this:

match-id team1-id team2-id result

1 1 4 “Australia”

2 1 3 “India”

3 4 3 “England”

team-id team-name

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

match-table = team-table =

team-id team-name matches results

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

1

4

…

match-schedule =

“India”

“England”

…

Alternatively, you could focus on matches:

match-id team1-id team2-id result

1 1 4 “Australia”

2 1 3 “India”

3 4 3 “England”

team-id team-name

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

match-table = team-table =

team-id team-name matches results

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

1

4

…

match-schedule =

“India”

“England”

…

and so on. (We’ll return to this pair in section 3.)
Making these kinds of trade-offs is a central concern in com-

puter science and software engineering. It has both theoretical and
practical consequences, including:

• the ability to express certain situations and hence to properly
capture the domain being modeled;

• the efficiency of computations over the data (e.g., hierarchical
representations can lead to better computational complexity
over linear ones);

• the maintainability of the data (e.g., duplicating data can lead
to updates creating inconsistencies);

• the complexity of the code that processes the data;
• the privacy of components of the data;

and more. Many of these issues are greatly accentuated when deal-
ing with large, real-world data sets, as happens in data science.

In short, learning to organize data—in particular, to think through
available design choices and understand their consequences—is a
critical computing skill that students must develop. However, we
find little attention paid to this problem in the computing-education
research literature (section 2). It is even unclear what stage is de-
velopmentally appropriate for students to start exploring data or-
ganization design questions.

Process. In this paper, we askwhether novice college students can
meaningfully start to tackle these questions. One natural approach
would be top-down instruction. However, we wished to establish a
baseline of what students could do with no instruction; we are also
inspired by the theoretical basis on contrasting cases (section 2).

Our overall study structure is as follows:
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(1) We give students a pair of data organizations for the same
real-world setting, such as the earlier pair. We ask them for
what trade-offs they see. This gives us insight into what set
of concerns they initially think about.

(2) We then ask them to perform a reflective activity.
(3) We then ask them to repeat the process of describing trade-

offs and providing justification.

The reader may well imagine several variants of this study; we
discuss some of them in section 12.

Our research questions focus on whether students are able to
make meaningful judgments at all, how the reflective step affects
this, and what impact different styles of reflection have. The con-
crete research questions are described in section 4.3, after we have
explained the process in more detail in section 4.2.

Contributions. This paper makes the following contributions:

• We introduce the problem of forming judgments about data
organizations, which we believe has not gotten enough at-
tention in the community (especially for novices).

• We present scenarios (section 3) that are accessible to novice
collegiate programmers and yet contain enough complexity
to lead to non-trivial reflections.

• We offer multiple rubrics (sections 5 and 8) for evaluating
student responses that are applied across scenarios.

• We show that a (multi-step) process of reflection (section 4)
is effective at getting students to meaningfully engage with
the different organizations (sections 6, 7, 9 and 10), and learn
about what students do and do not observe. The process
(which we actively use in our classes) is not only a useful
experimental construct but also valuable pedagogically.

Our findings are naturally contextual and conditional, and we dis-
cuss various threats in section 11.

Terminology: Data Structures versus Data Organization. We focus
on data structures that represent real-world phenomena, not on
classical “data structures” (such as queues, linked lists, or binary
trees) that may be entirely artificial.

Consider two very different kinds of trees. A binary search tree
is an abstract object, designed to improve performance. It is not
designed to mirror a real-world counterpart. Thus, on the one hand,
knowledge of the outside world does not dictate its design; on the
other, it can support operations like balancing. In contrast, a family
tree corresponds to a physical reality that constrains its shape; it
cannot be “balanced”. For lack of other terminology, we call these
computational and representational data structures, respectively.

The focus of this paper is on representational data structures:
ones that draw on a real-world context that even students without
much computing knowledge can meaningfully reflect on. However,
because the term “data structure” seems to be used extensively in
the education literature to refer to the former kind (section 2), in
this paper we use the phrase data organization consistently to mean
representational data structures. There are many different ways
in which these data can be organized (as we have already seen in
section 1; likewise, a family tree could be ascending, descending,
or not even formally a tree [11]). Such design alternatives are the
focus of this paper.

2 THEORY AND RELATEDWORK

Contrasting Cases and Variation. Our work is related to, and
inspired by, a theory from perception. A classic paper [9] demon-
strated that learning happens when noticing structural differences
across examples that vary in a systematic way. Several later projects
have built upon these ideas in a variety of fields (e.g., [3, 8]).

Our work is inspired even more closely by a series of papers,
culminating in Schwartz, et al. [18], on contrasting cases. This work
contrasts two instructional modes for physics: tell-and-practice,
where students are given instruction in concepts and formulas first
and then asked to practice it on a set of cases, and invent-with-
contrasting-cases (icc), where they are asked to derive the concepts
and formulas from the cases. They find that both groups showed
the same performance on word problems, but the icc group had a
better understanding of some physical phenomena, and did much
better at transfer to a semantically-unrelated topic.

There are some differences between those works and ours. First,
we consider only a pair of scenarios, not many in progression. Sec-
ond, they often focus on the perception of low-level differences,
whereas we are interested in the high-level consequences of the
differences. Third, those papers focus on concrete entities (scribbles
on a paper, chicks, etc.), whereas we give subjects data definitions,
which are abstract. We are not aware of work in that field that ad-
dresses these differences. Though this theoretical basis is therefore
not an exact fit for our work, we still employ lessons from it in the
design of our research. We also speculate (section 12) on ways in
which we might more tightly align our effort with that line of work.

Our work also relates to variation theory [15], which posits that
learning occurs when someone perceives differences within a space,
then constructs a generalization that captures its sameness. Our goal
is to have students identify data-design trade-offs, not to discover a
particular generalization about data organization.

Data Organization and Data Structures. The organizational ques-
tions we focus on sometimes manifest as programming language
data structure specifications, and sometimes as schemata in exter-
nal databases. These data organizations are also an important part
of several program design methodologies that suggest program
structures that follow data structures [5, 12].

However, this topic gets little coverage. The term “data struc-
tures” in the 2013 Curriculum Guidelines [13] appears to focus
on computational data structures. Data organization is relegated
to the “Information Management” elective under “Computational
Science”. Work on “basic” data-structure learning goals in CS2 [16],
approaches to teaching data structures (e.g., [14, 19]), and difficul-
ties students face (as captured in a concept inventory) [17], all focus
on computational data structures. None of this is directly relevant
to our work. Despite this marginalization, we believe that the rise
of data science—and the focus on data even by those who will not
major in computing—makes this topic deserving of our attention.

We have examined research on teaching software modeling (e.g.,
model-driven software engineering) and databases. Both demand
attention to data organization (e.g., schemas). The papers we have
found are either for upper-level students or discuss the topic gener-
ally without our specific focus. One notable exception [10] presents
a classification of examples for teaching modeling.

2020-06-27 19:13. Page 2 of 1–11.



Using Design Alternatives to Learn About Data Organizations ICER ’20, August 10–12, 2020, Virtual Event, New Zealand

A B

airport-table = flight-table =
table: table:
flight-num :: Number, flight-num :: Number,
airline :: String, airline :: String,
hour :: Number, hour :: Number
tickets :: List<Ticket> end

end
ticket-table =

data Ticket: table:
| ticket( ticket-num :: Number,

ticket-num :: Number, flight-num :: Number,
passenger :: String, passenger :: String,
passport-id :: Number) passport-id :: Number

end end

flight-num airline hour tickets

23 “UA” 10

1 “W9” 14

714 “TN” 12

1 “Tintin” 1002392

22 “Haddock” 4040233

14 “Spalding” 7744052

ticket-num flight-num passenger passport-id

22 714 “Haddock” 4040233

14 714 “Spalding” 7744052

22 23 “Asterix” 3324223

1 714 “Tintin” 1002392

37 1 “Obelix” 4409803

ticket-table =

airport-table =

flight-num airline hour

23 “UA” 10

1 “W9” 14

714 “TN” 12

flight-table =

Figure 1: Travel Data Organizations

3 STUDY SCENARIOS

We start by describing the data organizations that we used in the
studies. There are two scenarios, which we call Travel and Games.
In each scenario, we consider two ways of organizing the data; that
on the left we call “A” and the one on the right “B”.

The data organizations are shown in fig. 1 and fig. 2. Students
were shown only the textual definitions; the images are provided
only to help the reader and were not part of the study. We expected
students could produce concrete examples on their own, as both
courses taught and graded students on this task from the outset.

The figures use the grammar of the Pyret language [1], but are
hopefully understandable broadly. table creates a table, where each
row has the comma-separated schema shown. Thus, for instance,
airport-table is a table with four columns, the first of which is
of numeric type representing the flight number, and so forth. data
defines a new datatype; in this case, Ticket is a structure (akin
to a struct in C or dataclass or dictionary in Python) with three
fields (whose first field, for instance, is of numeric type representing
the ticket number). In languages that don’t support them natively,
tables can simply be thought of as lists or arrays of structures.
Therefore, these representations are straightforward to translate
into languages with structures and sequences, from Python to Java
to Haskell to OCaml and more (with types left out, as needed).

A B

match-table = match-schedule =
table: table:

match-id :: Number, team-id :: Number,
team1-id :: Number, team-name :: String,
team2-id :: Number, matches :: List<Number>,
result :: String results :: List<String>

end end

team-table =
table:

team-id :: Number,
team-name :: String

end

match-id team1-id team2-id result

1 1 4 “Australia”

2 1 3 “India”

3 4 3 “England”

team-id team-name

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

match-table =

team-table =

team-id team-name matches results

1 “Australia”

2 “Sri Lanka”

3 “India”

4 “England”

1

4

…

match-schedule =

“India”

“England”

…

Figure 2: Games Data Organizations

The Travel Organizations. Both organizations can represent
effectively the same information, i.e., a skilled programmer can
transform an instance of one representation into an instance of the
other without any loss. However, the two organizations provide
two very different views of travel.

We urge the reader to pause here and formulate their
thoughts on the two organizations before reading further.

A is oriented around airports: the primary structure is a table
of flights. Each flight has a list of tickets, which contain details
about individual travelers, but getting from an individual traveler’s
information (say their passport number) to the flights they are on
requires some programming effort (that can be quite challenging
for a novice, since it involves composing and nesting queries).

In contrast, B separates flights from tickets. Looking up a passen-
ger does not require nesting because ticket-table is a top-level
entity. However, this can impose a performance cost in multiple
settings:

• Finding all the passengers on a particular flight is easy in A:
search airport-table for the flight, and return the content
of the corresponding tickets field. This is bounded by the
number of flights. In contrast, in B this requires searching
all of ticket-table, which is bounded by the total number
of tickets.
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• Finding information on a particular passenger on a specific
flight is similarly impacted in B. In A, this requires searching
only through the corresponding tickets field’s list, which
is bounded by the size of that plane. In B, this also requires
searching all tickets.

At a high level, then, A often has better performance in return
for programming effort overhead; B is vice versa.

The Games Organizations. The Games organizations, which we
briefly saw in section 1, are also (almost: see section 12) equi-
expressible, and have a somewhat parallel organization: one or-
ganization (A) has two tables like Travel:B, while the other (B)
has one table like Travel:A. However, some of this similarly it
superficial, because these have different characteristics.

We urge the reader to pause here and formulate their
thoughts on the two organizations before reading further.

In Games:A, matches and teams are kept separate. The primary
focus is on the games, which are in match-table. Looking up
the names of the teams in a particular game requires queries into
team-table (i.e., effectively a join).

In contrast, Games:B focuses on teams. For each team we have
all its information, including a list of all its matches and results.
This reduces the need for certain queries. However, it introduces
a significant danger: data inconsistency. In A, information about
a match is recorded only once. In contrast, in B, the information
is stored once per team that competed in it. Thus a game can acci-
dentally be recorded for one team but not the other, or be recorded
for both but with different results. This also requires the two lists
to be of the same length, with no mechanism for ensuring it. In
short, there are many more subtle, unwritten, and (in mainstream
languages) difficult-to-express invariants that govern the correct
working of B.

4 STUDY METHODOLOGY

This paper describes two studies, each conducted in a different
university course. The two had somewhat different protocols.

4.1 Study Contexts

Both classes were taught at a highly selective private university
(Brown) in the USA. The classes had different professors (who are
both co-authors of this paper). Both classes were taught primarily
in a functional style. Both used Pyret.

CS-SumNon (“summer, non-major”, CSCI 0050) is a course in-
tended for non-majors and does not count towards the computer
science major. About half the population of 21 students was actually
in high school and had not yet been admitted to (any) university; the
remainder were undergraduates at the university pursuing other
majors. About 50% were female and about 10% minority.

The course was offered in the summer on a compressed schedule,
so times below are mapped to the corresponding point in a 13-week
US semester. The study was done as a homework assignment in the
9th-10th week of the semester. By then students had used tables for
nearly eight weeks, and lists for two weeks.

CS-AccInt (“accelerated introduction”, CSCI 0190) is an accel-
erated introduction to computer science, offered over 13 weeks in
the Fall semester. Students place in during the preceding summer

by showing competency on lists and higher-order functions. (The
placement process had used Racket [6].) Though many students
have substantial high school computer science (and the course is
designed primarily for them), about 10% of students have no real
prior computer science; the summer readings are self-contained
and assume no prior knowledge. The class had 59 students of whom
(reflecting the diversity of high school computing courses) about
7% were female and about 7% were minority.

The study was conducted in a “lab”: a two-hour session where
about 20 students do assigned work. Students were graded on at-
tendance, not work quality. The lab took place a month into the
semester. By then students had extensive experience with lists.
They were introduced to tables in the lab, where they first did some
learning and practice tasks, but all students were familiar with
lists-of-structures (which are roughly equivalent (section 3)), and
several students had prior experience with tables directly. Different
study conditions were assigned to different labs at random (each
lab had just one condition, so all students could be given one url
to work from). Students picked labs based on their schedule.

Tools. The rest of this paper refers to two tools. d4 is a new,
experimental tool that our group is developing for teaching data
organization. The studies in this paper use d4’s directed mode,
in which students answer prompts by writing executable code
(e.g., write an example of data with feature Y, write an expression
that computes X ). d4 checks answers for correctness against an
instructor-provided predicate (that is specific to each question).
The other tool, cpo (short for code.pyret.org), is the Web-based
ide for the Pyret language. It provides an editor and interactions
window (repl). Students use cpo in an undirected fashion: they
generate ideas for executable code to try on their own, without
prompts or feedback from checkers.

4.2 Study Protocol

CS-SumNon. Students worked only with the Travel scenario.
Each student went through the following steps:

flight-num airline hour tickets

23 “UA” 10

1 “W9” 14

flight-num airline hour

23 “UA” 10

1 “W9” 14

Read Compare Survey D4

“Before” “Δ1” “Δ2”

(1) They were given the two organizations and asked (free-
response), Compare and contrast the benefits of each orga-
nization. Are there scenarios or tasks for which one of the
organizations seems better suited? In the data analyses below,
findings from this step are labeled “Before”.

(2) They were then given the following specific scenarios (di-
rected), in the form of a (static) survey, to spur thinking:

(a) A flight is considered “under-booked” if it has fewer than
50 tickets. Find all flight numbers for flights that are under-
booked.

(b) Given a ticket number, find the airline associated with its
flight.

(c) Determine if there are two tickets under the same name with
different passport IDs.

(d) Add a new field to every ticket that assigns a seat number
to the passenger.

2020-06-27 19:13. Page 4 of 1–11.
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Note that they were not asked to write any code; they were
simply asked to consider the scenario, record whether they
had a preference between the organizations just for that
scenario (radiobox), and explain their thinking about the
two organizations in light of it (free-response).
To keep the data manageable, we present an analysis that
considers all four questions together, rather than individually.
The data will show the difference to Before, labeled “Δ1”.

(3) They were then asked to work through more questions us-
ing d4 (also directed). They were shown concrete examples
and asked questions on the same issues as above, but using
these examples: e.g., How many tickets are associated with the
passport id 0195283? and Produce an updated ticket-table
that reflects passenger “John” with passport number “9374544”
purchasing ticket “8” for flight “8254”. The full instruments
can be found at
https://cs.brown.edu/research/plt/dl/icer2020/

(4) They were then asked the questions from step (2) again, fol-
lowed by the question from step (1). The additional difference
(to Δ1) is labeled “Δ2”.

CS-AccInt. Students worked through both Travel and Games
scenarios. Students in one group saw Travel first and Games sec-
ond, while the other group saw Games first and Travel second. In
addition, in each case, roughly half the students were shown the
A and B organizations as listed above, while the other half were
shown them in swapped order (B to the left, A to the right). These
were normalized to the order shown for the purposes of analysis
(including reinterpreting student answers on this basis). Because
the total number of students is small, we do not check whether the
spatial order of presentation had an impact.

The workflow is summarized in this graphic:
flight-num airline hour tickets

23 “UA” 10

1 “W9” 14

flight-num airline hour

23 “UA” 10

1 “W9” 14

flight-num airline hour tickets

23 “UA” 10

1 “W9” 14

flight-num airline hour

23 “UA” 10

1 “W9” 14

Read

Read

Vote + Compare

“<1”

CPO

“>1”

Vote + Compare

“<2”

D4

“>2”

Concretely, each student went through these steps:

(1) They were shown the two organizations of one scenario and
asked to: (1) Vote on which organization they preferred: A, B,
Either, or Neither. (2) Compare and contrast the two. Their
response is labeled “<”.

(2) For the reflection step, instead of concrete questions, they
were then put in cpo with the two definitions loaded; they
were encouraged to experiment with them (undirected).

(3) They were asked to once again vote and to respond to the
first question. The is labeled “>” and will show the difference
to the immediately earlier < answer.

(4) They then repeated the above three steps for the other sce-
nario, using d4 (directed) rather than cpo.

4.3 Research Questions

There are three main questions we set out to answer:
rq 1 When asked to evaluate data organizations, what perspec-

tives do students tend to take? What do they most focus on
and what do they overlook?

rq 2 How does the reflection step influence students’ perceptions?
rq 3 How does undirected reflection on organizations compare

with directed reflection in terms of leading students to think
about the design of data organizations?

To advertise where we are going: we find a surprising depth of
student thought up front; we find the reflection results in noticeable
improvements; we find some blind spots; and we also notice that
some forms of directed reflection have little impact over undirected.
Section 10 summarizes findings on these questions.

5 A RUBRIC FOR RESPONSES

For students’ open-ended text, we used open-coding to develop a
rubric. This is shown in fig. 3. The rubric is divided into high-level
categories (like “Access”), each of which has one or more low-level
tags (like “AEX”). It was developed by two of the authors. After
six major iterations, the team obtained an inter-coder reliability
of 0.926 using Cohen’s ^. All subsequent data analysis was then
conducted by one of the authors.

As in any such coding activity, student comments are going to
directly or indirectly reflect details of their course. Different courses
would possibly generate different responses to abstract over. There-
fore, we do not claim these codes are universal. However: (a) they
are useful for our analysis; (b) we believe they reflect fairly univer-
sal (though not all) concerns when discussing data organizations;
and (c) they are a useful starting point for other researchers. We
discuss this issue more in section 11 and section 12.

For readability, we have provided only abbreviated versions of
the rubric. The exact rubric has much more fine-grained text (as
needed to achieve a reasonable inter-coder reliability score). We
give the full text at https://cs.brown.edu/research/plt/dl/
icer2020/. (The same is true of the rubric in section 8.)

6 FINDINGS FROM CS-SUMNON
We begin by describing our findings for CS-SumNon. Recall (sec-
tion 4.1) that these are non-major students and often still in high
school. The table in fig. 4 summarizes our coding of their responses,
with the columns as described in section 4.2.

We note that, without any prompting, a few categories immedi-
ately occur to students: most of them (naturally) think about how
the organization will affect accessing data, but many also think
about code structure for working with the data (such as nesting
of queries).1 Perhaps more surprisingly, they also think about the
programmer experience. Updating, however, does not seem to occur
to most of them (but they had not seen much of it in class, either).

The first reflection activity changes this significantly. Because
the questions explicitly ask them to consider operations like ex-
tending the data, they naturally discuss updating. The operational
nature of the reflection seems to also lead them to naturally describe
1Note that just because students wrote about some characteristic, it doesn’t mean they
did so correctly. We kept track of mistaken assertions in student responses. However,
there were sufficiently few of these that we do not break them out for separate analysis.
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Access Whether students consider how an organization im-
pacts how data can be accessed.
AEX Explains how a certain organization might make it eas-

ier or more difficult to perform tasks that involve accessing
data from that organization.

Update How the data organization interacts with the difficulty
of making changes. Answers that involve discussions about
adding or removing data, or creating and removing the entire
data organization, belong to this category.
UEX Explains how a certain organization might make it eas-

ier or more difficult to perform tasks that involve updating
data from that organization.

Algorithm Efficiency Whether students discuss storage
space or runtime efficiency issues. Students were given the
tag even if they did not use notations like big-O in their
description.
SC Shows awareness of the space it takes to store data for

either organization.
TM Mentions the running time of algorithms.

Example Whether students can conceptualize how the differ-
ent data organizations could be used, and see if they can
think of examples, such as scenarios, cases, or programming
tasks, in which either organization might perform better
than the other.
NRL Has no mentions of real life applications, but instead

solely discuss the organization abstractly. The percentage
of instances of this in our dataset rounds to 0.

CDE Considers coding tasks, implementation of certain fea-
tures, or the functions needed to achieve a certain goal.

Miscellaneous Higher-level discussions about the data organi-
zations, such as their general design, whether the organiza-
tion is intuitive for either end-users or developers, and how
easy they are to learn and use.
SP Security and privacy issues.
PEX Programmer experience: focuses on how the design of

the organization influences a programmer’s experience
when working with it.

DTC Data-type choices: what data types were chosen to
represent data in the table (e.g., numbers and strings) and
how that matters.

External Issues Things that are not directly related to stu-
dents’ answers to the assignment itself, but rather some
external factors that could have influenced students’ perfor-
mance. We ignore these in this paper.

Figure 3: Response Rubric

programming consequences. However, some categories (like effi-
ciency and privacy) neither occur to them originally nor as a result
of answering these questions. This is perhaps unsurprising for an
introductory non-majors course, but these data also suggest areas
that demand more explicit instruction. (While some may consider
privacy issues outside the scope of an introductory course, others
might argue that, for non-majors who will use that course to do

Category Tag Before Δ1 Δ2
Access AEX 74% 26% 0%
Update UEX 26% 74% 0%

Alg. Eff. TM 11% 0% 0%
SC 5% 5% 0%

Example CDE 53% 47% 0%

Misc.
SP 0% 0% 0%
PEX 53% 11% 16%
DTC 21% 0% 5%

Figure 4: Categories and Tags for CS-SumNon (N=21)

Travel Games
Changed Preference 60% 52%

No Change 40% 48%
Initially liked:

A 33% 41%
B 31% 28%

Either 29% 22%
Neither 7% 9%

Eventually liked:
A 21% 53%
B 60% 17%

Either 19% 22%
Neither 0% 7%

Figure 5: Preference Votes for CS-AccInt (N=59)

basic data science in other disciplines, it is imperative to expose
them to this concern.)

The low occurrence of the time and space efficiency tags is not
surprising. Being a course for non-majors, the course does not
cover big-O and had not talked about performance at the point
of the study. Past research [7] shows, however, that even when
a course does not mention it at all, students pick up these issues
(perhaps from teaching assistants, fellow students, parents, etc.),
which might explain the non-zero occurrences.

The second reflection activity uses d4. Here, we see very little
impact. In most cases this is unsurprising: either the category was
already discussed by everyone, or it was essentially outside the
scope of d4’s prompts (such as privacy). We do see some additional
impact on thinking about the programmer experience.

7 FINDINGS FROM CS-ACCINT: PART 1

As we can see from section 6, prompting students with very specific
scenarios right away results in them quickly considering several
standard issues. However, this is both unrealistic in general (when
they are designing a new data organization, they need to be able
to generate prompts for themselves) and does not give us a useful
baseline for how they would do in an unstructured setting. This is
why the protocol for CS-AccInt changes (section 4.2) to the much
more realistic setting of simply giving them an ide in which to
interact with the definitions and arrive at their own conclusions. For
the second scenario, we gave them d4 instead of cpo. This was both
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Category Tag Travel < Travel > Games < Games >
Access AEX 90% 9% 86% 10%
Update UEX 21% 19% 24% 31%

Alg. Eff. TM 14% 7% 7% 3%
SC 7% 3% 19% 5%

Example CDE 50% 22% 48% 19%

Misc.
SP 5% 0% 0% 2%
PEX 38% 24% 48% 16%
DTC 2% 0% 7% 5%

Figure 6: Categories and Tags for CS-AccInt (N=59)

to compare the effects, and to limit time: we imagined undirected
reflection could takemuch longer than answering focused questions
with sample data.

First, we look at how students voted their preference and how
their votes changed. Recall (section 3) our own (relatively expert)
view: We found true trade-offs between Travel:A and Travel:B,
noting that Travel:A provided better performance in some com-
mon cases, but this came at the cost of greater code complexity. In
contrast, we claimed that Games:A was significantly better than
Games:B, due to the latter’s much greater likelihood of error.

Figure 5 summarizes student opinion before and after reflection.
In Travel, students initially come down quite evenly between the
two.2 However, after reflection, they seem to significantly prefer B.
In Games, they begin with a slight preference for A, and end with
a much stronger preference for it.

Irrespective of their alignment with our view, these data suggest
that students were actively choosing (rather than taking the easy
way out with “Either”), and were also seriously re-assessing their
views in light of the reflection activity. Furthermore, from the writ-
ten remarks, we see ample evidence of students engaging deeply
with the activity.

Going into this study, we expected that this population would
do significantly better than that of CS-SumNon. These students
typically had much more computer science experience, including
(in many cases) multiple years of high school computer science;
the content of CS-AccInt was also much more sophisticated. By
the time of this lab, they had already spent two weeks working
with big-O, including having to submit a graded big-O analysis (and
many had prior high school experience with it).

Figure 6 shows our coding of the student responses to the open-
ended questions.3 For simplicity, here, we ignore whether they saw
that scenario first or second, grouping both positions together. We
dive into this distinction later, in section 10 (where we will not see
big differences).

Despite the differences in student population, we were surprised
by how similar the “Before” column of fig. 4 is to the “Travel <”
and “Games <” columns of fig. 6. If anything, the CS-SumNon
students seem to be a little more analytic (lacking evidence, we

2Our analysis of written comments indicates that students generally did not make a
clear distinction between “Either” and “Neither”, and most of the latter were really
closer to the former. Therefore, these two entries can essentially be summed and
treated as “Either”.
3Rubric tag ratios for CS-AccInt are relative to the number of students in each
condition, as opposed to the total number of students in the class.

Same Preference Only applied when students did not change
their preference between pre-exercise and post-exercise an-
swers.
REIT Reiteration: reflection did not stimulate them to think

about something they had not considered before.
PROT Praise the other: after reflection, they saw advantages

to the organization they did not prefer.
STR Strengthen: affirms their pre-reflection answer with

new, concrete ideas, or provided justification or reasoning
to support their decision to not change their preference.

Changed Preference Only applied when students changed
their preference after reflection.
LRN Learned more: learned or discovered aspects of the

data organization that they had not considered before the
exercise.

CRCT Correction: explicitly mentions that what they
thought before doing the exercise turned out to be false,
and they corrected their belief after doing the exercise.
This tag is narrower than LRN, in the sense that change in
preference is not only caused by new realizations, but that
the student found something that contradicts with their
prior beliefs about the data organizations when doing the
exercise.

Changed Reasoning Applied if the student approached the
evaluation from the same perspective (either concrete coding
aspects or abstract high-level aspects) but had new under-
standing or new ideas about them. Applies whether or not
students changed preference.
EXCD Expanded coding ideas: student saw coding with the

data organization in a new light, and changed their opinion
regarding how they would code with that organization.

EXNC Expanded non-coding ideas: student saw the high-
level or abstract aspects of the data organization in a new
light, and changed their opinion about them.

Proposed Improvements Students’ answers proposed im-
provements.
ORG Proposed changes to the data organization.
FEAT Proposed to add new features.

Figure 7: Difference Rubric

choose not to speculate on reasons why). Because the sample sizes
are relatively small we do not believe there will be much use in
running formal statistical analyses of differences; indeed, we are
not claiming (based on our reading of student comments) that there
are significant differences between the two populations for a test
to tease apart. We also noticed that the CS-AccInt audience did
not use big-O very much. This was somewhat surprising: not only
were they learning it and starting to use it in assignments, some
had already seen it earlier in high school, suggesting that lack of
familiarity was not the issue: perhaps it did not occur to them
instinctively.
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Travel Games

Same Pref.
REIT 14% 12%
PROT 24% 21%
STR 47% 43%

Ch. Pref. LRN 29% 41%
CRCT 12% 5%

Ch. Reas. EXCD 43% 38%
EXNC 24% 21%

Figure 8: Difference Categories and Tags for CS-AccInt

8 A RUBRIC FOR DIFFERENCES

An easy way to spot differences in student thinking after reflection
is to just look at the set of tags. If a new tag appears after reflection,
this suggests some impact on their thinking. (The absence of a tag
is far less meaningful: students may simply not feel like repeating
themselves. Therefore, we did not consider “dropped” tags.)

However, this is only a coarse-grained reflection of their change
in opinion. Furthermore, even in cases where the tags remain the
same, in CS-AccInt we were able to identify qualitative differences
in their written answers. We therefore created a separate rubric to
assess differences (shown in abbreviated form in fig. 7). This rubric,
too, has categories with corresponding tags. It was created by the
same two coders and deployed by the same one, and after three
major revisions arrived at a Cohen’s ^ of 0.716.

9 FINDINGS FROM CS-ACCINT: PART 2

The second part of our analysis for CS-AccInt therefore applies
the difference rubric (section 8). The results are shown in fig. 8.

We find, in particular, that students exhibit all the behaviors we
would hope to see: through reflection, they (a) learned to better
appreciate the organizations after their initial vote (PROT, LRN),
(b) learned about aspects of their preferred organization that they
had not considered earlier (STR), (c) corrected some of their views
(CRCT), and (d) changed their reasoning (EXCD, EXNC).

Naturally, these tags are well-represented because the rubric
was created as a consequence of seeing such comments with some
frequency. However, these also seem to represent a good set of con-
siderations we would hope to see student engage with in reflecting
over different data organizations.

10 RESEARCH QUESTION RESPONSES

Based on all these data, we now return to the original research ques-
tions that framed our study and try to address them. Note that the
answers to rq 1 and rq 2 only repeat and summarize information
from earlier in the paper; rq 3 does that but also presents new data.

rq 1. When asked to evaluate data organizations, what perspec-
tives do students tend to take? What do they most focus on and what
do they overlook?

In general, we find that students focus on low-level but important
operations such as accessing parts of the structure, and less so on
updating it (unless prompted). Program efficiency, whether formal
(in terms of big-O) or informal, is not a major consideration when
contrasting organizations, but the programmer experience (which is

Travel Games

AEX cpo 8% 16%
d4 9% 4%

UEX cpo 23% 41%
d4 16% 19%

TM cpo 12% 3%
d4 3% 4%

SC cpo 4% 9%
d4 3% 0%

CDE cpo 12% 22%
d4 31% 15%

SP cpo 0% 3%
d4 0% 0%

PEX cpo 15% 16%
d4 31% 15%

DTC cpo 0% 9%
d4 0% 0%

Figure 9: Rubric Tag Gains for CS-AccInt

a “human efficiency” consideration) is. Code examples are routinely
used to express their thoughts. Perhaps unsurprisingly, privacy
issues are rarely mentioned. (They would not distinguish between
these organizations anyway.) We find it interesting that these issues
are raised in similar proportions by accelerated collegiate students
and a population of non-majors and pre-college (under 18) students
(“Before” in fig. 4 versus “Travel <” and “Games <” columns of
fig. 6).

rq 2. How does the reflection step influence students’ perceptions?
We see this step having a large impact in both study settings.

We notice it in the set of issues that students raise, and even more
starkly in their change in preferences. Indeed, we found it necessary
to create a rubric of differences to capture the broad set of issues that
arose when comparing their answers before and after reflection.

rq 3. How does undirected reflection on organizations compare
with directed reflection in terms of leading students to think about
the design of data organizations?

We expected directed reflection to have much stronger outcomes
than undirected. Our data suggest much more ambiguity.

Students saw two forms of directed reflection. In CS-SumNon,
we see a huge impact from the initial survey, as shown in the Δ1
column of fig. 4. They also use d4 after that, which has a much
smaller impact, but this is unsurprising because the d4 prompts are
very similar to those of the survey.

In CS-AccInt, the first reflection step was undirected: they were
just given cpo to play with. For their second scenario, they used
d4 for directed reflection. Recall that students who did Travel first
(with cpo) did Games second (with d4) and vice versa. The data in
fig. 6 does not distinguish between the two. Here, we delve into it.

Figure 9 shows the gain in tags after the reflection step. For
each tag, there is an entry for each of cpo (first reflection) and
d4 (second). The numbers shown are the ratio of students who
were in that category who added that tag after reflection. As each
of these reflections was on a different scenario, this serves as a
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Travel Games

REIT cpo 15% 0%
d4 13% 27%

PROT cpo 27% 19%
d4 22% 23%

STR cpo 46% 44%
d4 47% 42%

LRN cpo 35% 50%
d4 25% 31%

CRCT cpo 12% 3%
d4 13% 8%

EXCD cpo 50% 34%
d4 38% 42%

EXNC cpo 31% 22%
d4 19% 19%

Figure 10: Difference Rubric Tag Gains for CS-AccInt

formative comparison between letting students freely explore the
data organizations (cpo, undirected) and guiding their explorations
with explicit prompts (d4, directed).

The data show that there is notmuch increase in value to using d4
with CS-AccInt (and indeed, the raw change ratios are sometimes
lower). We suspect a few possible factors:

• It may be that the prompting that d4 offers is either uninter-
esting or simply redundant for the CS-AccInt audience, as
opposed to the value directed reflection has for CS-SumNon.
It would be interesting to contrast using d4with just a simple,
static, non-interactive form (as given to CS-SumNon).

• From reading responses, we detected a certain degree of
fatigue in the second part. Whether d4 was the cause of the
fatigue or the victim of it cannot be established with the
information we have, but it would indicate why there was
less depth of change.

• The CS-AccInt audience is sophisticated enough that they
may have seen some similarities between the two activities,
and hence were less engaged in the second scenario (i.e.,
instead of fatigue, the cause may be ennui).

Recall that we introduced a rubric of differences to give us more
fine-grained information than the initial rubric’s tags can on their
own. In fig. 8, we saw the rate of use of the tags in the difference
rubric. Again, however, we did not distinguish between what kind
of reflection step had occurred that led to that difference. In fig. 10
we separate these by cpo versus d4. Again, for the most part, these
do not reveal any major advantage to using d4, and suggest d4
underperformed compared to just cpo. (The one place where there
is a stark difference that appears to be in d4’s favor—27% to 0%—is
REIT, which is merely reiteration without enhancement (fig. 7).)

11 THREATS TO VALIDITY

11.1 Internal Validity

Because our students are novices, we provided sample organizations
to consider instead of asking them to generate these. However, it
is possible that they might have generated different organizations

than ours, which they would have found much more “natural” than
ours. Providing ours instead may have inhibited the quality of their
work on the organizations, rendering their responses poisoned by
the choices we made.

Coding (as in classification, not programming) inherently con-
tains biases of omission, commission, and blind spots. Though we
have used inter-coder reliability, this only tells us that the coders
have similar biases, not that all biases have been eliminated. Nev-
ertheless, we believe the codes we have arrived at represent a rea-
sonable set of concerns about data organization, and thus that our
rubrics still have some value despite containing latent biases.

Student-preference changes after directed reflection—the two
steps in CS-SumNon and d4 in CS-AccInt—are very likely to be
highly influenced by the prompts they saw. These in turn largely
reflect the biases of the designers of those prompts: namely us.
Therefore, student responses (and hence the rubrics) may well be
biased by the kinds of issues we ourselves tend to most consider as
developers and educators.

11.2 External and Ecological Validity

Our rubrics not only still contain potential biases, as noted in sec-
tion 5, but are likely to also be shaped significantly by course con-
tent. We have argued that the rubrics still appear to describe fairly
universal concepts (if not all of them) in discussing data structures.
If this is incorrect (e.g., if we suffer from confirmation bias), then the
rubrics are not of much value in other settings, nor can an analysis
based on them usefully be compared against those by others. Only
through more research (by others) in this area can we determine
whether and to what extent this is a problem.

A significant assumption behind our work is that students can
reason about abstract data definitions—most probably by construct-
ing concrete example data for themselves. This is a skill that takes
some practice. As noted in section 3, our study classes heavily em-
phasize writing tests for programs, and (following HtDP [5]) even
recommend writing examples before starting to work on a solution.
Therefore, from early on, these students learn to construct data
examples. Students without that facility—for instance, those who
are not required to do high-quality testing—may struggle to envi-
sion concrete data examples and may thus have difficulty reasoning
through the effect of various operations.

Programming language style could also be a significant factor.
Both CS-SumNon and CS-AccInt primarily use functional pro-
gramming, in which updates to data are much less common than
in imperative programming. As a result, our participants may have
thought about access much more than update.

11.3 Construct Validity

By giving students a pair of organizations, we give them a perhaps
valuable tool for reasoning about data. However, we have not pro-
vided evidence that, left to themselves, they are capable of coming
up with such pairs (or more). We suspect they can (section 12), but
if they in fact cannot, then this work is of limited value for when
these students are faced with later programming tasks.

When prompted, our students did engage in meaningful analysis.
However, this does not imply that they would necessarily pause to
prompt themselves. A more open-ended study would leave them
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unprompted and see whether they even consider organizational
alternatives, which ones, and what decisions they make. It is also
unclear what differences we would see between novice and experi-
enced programmers in this regard; we suspect some of the literature
on schema retrieval [2] would almost certainly apply here too.

A broader concern is the causal relationship between this ex-
ercise and building a system. Ultimately, one of our main goals
is to make students into better programmers (in later courses, as
data scientists, as professional developers, etc.). If, however, their
analyses of the data organizations do not lead to actionable change,
then arguably the exercise has not had much value. Evaluating
this requires seeing the effect of their analysis on their overall
software-development process.

12 DISCUSSION

Alternative and Follow-Up Studies. The particular protocol used
in this study (section 4.2) naturally generates ideas for several
variations:

• Given a prose description of a real-world setting, can novices
generate even one data organization?

• Given a prose description of a real-world setting, can novices
generate more than one data organization? There is some
evidence that with a little instruction, they can produce
different multiple different program plans [4]. Does this carry
over to data?

• What is the role of pictures as opposed to textual represen-
tations of concrete data?

• What would the quality of responses be if we showed stu-
dents only one data organization instead of two? That is,
how essential is the contrast to idea generation?

• If we give students two organizations that are not equi-
expressive, do they detect it? Can they write concrete exam-
ples of situations that one organization can represent but the
other cannot? (Note that, depending on interpretation, the
Games organizations may not be exactly equi-expressible.
We haven’t indicated what match-id means. Does it give
an ordering of the matches? If so, Games:A has information
that Games:B does not. Either way, Games:B does not have
a match-id. None of our students mentioned this.)

• As time passes, applications add support for new operations
and sunset some older ones. Because a data organization is
often chosen based on expectations of operations and their
frequency, changes to them require revising the organization.
How well can students perform these changes?

The Role of d4. Even though d4was not the focus of this paper, we
were somewhat surprised that it did not do better than undirected
reflection in CS-AccInt. As noted in section 10, student responses
suggested a certain degree of fatigue or ennui when answering
questions about the second scenario, where d4 was deployed.

A natural follow-up is to alternate reflection activities so that
some students see d4 for the first scenario. Care must be taken with
experiment design for two reasons. First, students would already
have extensive experience with their ide (like cpo), unlike d4. Sec-
ond, d4 prompts in the first scenario may implicitly carry over to
the second one (e.g., getting them to think about updates). Both
issues reduce the purity of the comparison.

Presenting Data Organizations. We have presented the data or-
ganizations in section 3 using algebraic datatypes, which are com-
monly found in functional languages and increasingly in hybrid
languages that borrow from functional programming, such as Scala
and TypeScript. This notation arguably lays out the data organi-
zation very crisply to the initiated. In contrast, the mixing of data
and code in object-orientation may make the underlying data orga-
nization much harder to see in code; it may benefit from, or even
require, a presentation like a uml diagram for the reader to clearly
see the structure. Adapting this work to other linguistic settings
therefore clearly needs some thoughtful effort.

Transfer. The literature on contrasting cases suggests that it is
very useful for transfer [20]. Transfer was not a focus of our study,
but naturally, the purpose of doing exercises such as ours is to help
students develop transferable skills in analyzing data organizations.
Even before addressing far-transfer, it would be valuable to use
scenarios that are superficially different (e.g., different domains)
but similar in the abstract, to judge whether students are able to
near-transfer their judgment between the scenarios.

Belief Revision. From a pedagogic perspective, the data in this
paper show that students engage deeply with design alternatives.
This suggests that they are well prepared for subsequent classroom
instruction on the topic. However, there is a small danger that
they may have gotten overly attached to their views and may be
unreceptive to expert analyses of the same structures. Exactly how
much bottom-up experimentation is healthy so that students form
initial impressions and are ready to engage in top-down instruction
without becoming entrenched remains an open question for this
kind of work.

Computational Thinking. What is the role of data reasoning in
computational thinking? Some formulations of the term emphasize
algorithms and procedural thinking, but in the process overlook
data organization. However, the structure of data has major conse-
quences for system behavior—and, as we show with preliminary
evidence, is something even novices can reason about. Notably (as
their written answers demonstrate), they are able to pass judgment
on the data using examples of real-world situations and uses that
they likely could not themselves program.

We therefore believe activities like the one described in this paper
can lead to a richer, fuller formulation of computational thinking,
and can generate new and engaging activities that many students
can participate in. Indeed, computing background does not seem to
matter much in our data, and a more diverse group of students is
likely to make a much richer set of judgments—thereby enabling
students in traditionally underrepresented groups to contribute
based on their unique experiences, and also feel more valued.
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