
215

What Happens When Students
Switch (Functional) Languages (Experience Report)

KUANG-CHEN LU, Brown University, United States of America

SHRIRAM KRISHNAMURTHI, Brown University, United States of America

KATHI FISLER, Brown University, United States of America

ETHEL TSHUKUDU, University of Botswana, Botswana

When novice programming students already know one programming language and have to learn another,

what issues do they run into? We speci�cally focus on one or both languages being functional, varying along

two axes: syntax and semantics. We report on problems, especially persistent ones. This work can be of

immediate value to educators and also sets up avenues for future research.

CCS Concepts: • Social and professional topics→Computing education; • Software and its engineering

→ General programming languages.

Additional Key Words and Phrases: Programming language learning, Language transfer, Pyret, Python, Racket

ACM Reference Format:

Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu. 2023. What Happens When

Students Switch (Functional) Languages (Experience Report). Proc. ACM Program. Lang. 7, ICFP, Article 215

(August 2023), 17 pages. https://doi.org/10.1145/3607857

1 INTRODUCTION

A great deal of work has gone into teaching students their �rst programming language. Less work
has gone into what happens when students learn a subsequent one. While prior knowledge can
help, psychology tells us that because of phenomena like proactive interference, what we have
previously learned can sometimes also hinder our ability to learn new material. Many programmers
surely have direct personal experience with this.

Though some prior research has examined subsequent-language learning in students (Section 2),
this is the �rst work we know to systematically study this question where functional programming
languages are involved. In addition, we are inspired by the works of Tshukudu and collaborators
(discussed in detail in Section 2), who studied the consequences of syntactic and semantic similarity.
We therefore set up two studies, one with syntactic di�erence and semantic similarity, and the
other, vice versa.
A pure research experiment (such as a lab study) could invent languages that vary in precisely

these ways. However, in an educational setting, we need comprehensive materials (such as IDEs,
libraries, documentation, and textbooks) that an experimental language is unlikely to provide. As a

Authors’ addresses: Kuang-Chen Lu, Department of Computer Science, Brown University, Providence, RI, United States

of America, kuang-chen_lu@brown.edu; Shriram Krishnamurthi, Department of Computer Science, Brown University,

Providence, RI, United States of America, shriram@brown.edu; Kathi Fisler, Department of Computer Science, Brown

University, Providence, RI, United States of America, kathryn_�sler@brown.edu; Ethel Tshukudu, University of Botswana,

Gaborone, Botswana, tshukudue@ub.ac.bw.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/8-ART215

https://doi.org/10.1145/3607857

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
HTTPS://ORCID.ORG/0000-0001-6502-9275
HTTPS://ORCID.ORG/0000-0001-5184-1975
HTTPS://ORCID.ORG/0000-0002-7895-8206
HTTPS://ORCID.ORG/0000-0001-5626-5663
https://doi.org/10.1145/3607857
https://orcid.org/0000-0001-6502-9275
https://orcid.org/0000-0001-5184-1975
https://orcid.org/0000-0002-7895-8206
https://orcid.org/0000-0001-5626-5663
https://doi.org/10.1145/3607857


215:2 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

compromise, we therefore use Pyret, which was expressly inspired [The Pyret Crew [n. d.]] by the
syntax of Python but the semantics of mostly-functional languages like Racket and the ML family:

syntactically di�erent, semantically similar: One study examined how college students
exposed to Racket viewed Pyret (Section 4). There are almost no syntactic similarities between
the Lispy parenthetical syntax of Racket and the in�x syntax of Pyret, yet the semantics are
almost identical: most Racket programs can trivially be transliterated to Pyret [Fisler et al.
2023]. We will refer to this as the Racket-Pyret study.

syntactically similar, semantically di�erent: In another study, with di�erences in popula-
tion and course details, college students transitioned from Pyret to Python (Section 5). This
keeps the syntax fairly familiar but adds imperativity and state. We will refer to this as the
Pyret-Python study.

Our work centers around the challenges of learning a new programming language. We identify
features that do and don’t cause students problems. In particular, we observe that the Racket-Pyret
transition is quite seamless, but moving to Python introduces signi�cant di�culties.

2 RELATED WORK

There was notable interest in the question of second (or subsequent) language learning in the
1980s and 1990s. Walker and Schach [1996] studied students who knew procedural languages
transitioning to Ada. They noticed that when asked to solve programming problems in Ada,
students preferred to use familiar syntactic constructs, such as for-loops, over new ones (in this
case, the loop-exit-end constructs of Ada). Scholtz and Wiedenbeck [1990, 1991, 1992, 1993];
Wiedenbeck and Scholtz [1996] did a series of work on language transfer between procedural and
object-oriented languages. Roughly speaking, their work emphasizes program construction and
plans (program-construction knowledge that is irrelevant to syntactic details). They argued that
plans are transferable between programming languages, that people tended to stick to their known
plans, and that the success of transfer depends on how well the known plans aligned with the new
languages. Kessler and Anderson [1986] found that novice programmers trained in iteration are
more successful transitioning to recursion than vice versa. Wu and Anderson [1990] found that
transfer in programming “was largely localized in writing the �rst drafts of programs”.
These works di�er from ours in two important ways. First, most of them did not focus on

functional programming (though Wu and Anderson [1990] did use Lisp). Second, most have
students write programs rather than read them. Arguably, if students cannot even read a program, it
is unclear whether they can write them; at any rate, the link between program writing and reading
is not clear in a functional setting (Fowler et al. [2022]; Lopez et al. [2008] suggest that the two are
associated for small Python and Java programs, respectively). By instead focusing on reading, we
can avoid some confounding factors: e.g., students writing programs “in the wild” may get help
from teaching assistants, while in a lab study, they may feel nervous with a new language.
A series of papers by Tshukudu and co-authors [Tshukudu 2019; Tshukudu and Cutts 2020a,b;

Tshukudu et al. 2021a,b; Tshukudu and Jensen 2020] and Tshukudu’s dissertation [Tshukudu 2022]
focused on the syntactic versus semantic split we mentioned in Section 1. They reported that a
familiar syntax facilitates language transfer if the semantics is also similar, but hurts if the semantics
is di�erent. There are multiple notable di�erences between their work and ours:

(1) They focused entirely on procedural and object-oriented programming in Java, Python, C,
and C++. The sets of features we consider—such as higher-order functions and implicit
returns—cannot or do not arise in their settings.

(2) The underlying imperative semantics of their languages are quite similar. We focus on deeper
semantic di�erences, such as functional versus imperative.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:3

(3) Similarly, the syntactic di�erences between their languages are arguably much smaller than
the di�erence between Pyret and the Lispy syntax of Racket (which seems to provoke a
visceral reaction in many programmers).

For all these reasons, our work complements theirs and provides a richer sense of the comparison
space. Indeed, we arrive at di�erent conclusions (Section 6) than they do.

Santos et al. [2019] summarized their observations of students learning Java in a second course
after a �rst course in Racket. When we compare their experience to ours, we �nd di�erent sets of
challenges. For instance, their students had di�culty going from Racket’s struct to Java’s class;
our students had little di�culty going from Racket’s struct to Pyret’s algebraic datatypes. Their
students also had trouble going from Racket’s cond expressions to Java’s if, while ours did not
going from Pyret’s multi-armed conditionals to Python’s if. Interestingly, ours struggled with
return, which they do not mention. Even more surprisingly, their paper does not discuss state.
There are also two notable methodological di�erences to our work. First, they vary both the syntax
and semantics signi�cantly. Second, their work appears entirely anecdotal, and it is unclear what
process they used to arrive at their �ndings.

Some other works, unlike ours, use observational studies rather than experimental ones. Denny
et al. [2022] investigated re�ections by students transitioning from MATLAB to C and reported
that syntactic di�erences, the new (static) type checking, and new error messages were the most
challenging. Shrestha et al. [2020] inspected hundreds of StackOver�ow questions (involving
18 programming languages), interviewed 16 programmers, and concluded that prior languages
commonly interfere with learning a new one. Bose et al. [2022] investigated StackOver�ow posts
about Julia made by people transitioning from various programming backgrounds to Julia and
found that those new Julia programmers commonly “seek information on how they can accomplish
tasks in Julia that they were previously able to do before with the language they are transitioning
from”, and that the new type systems and the new package system also impose many challenges.
Extensive work [Espinal et al. 2022; Franklin et al. 2016; Kölling et al. 2015; Moors et al. 2018;

Powers et al. 2007; Weintrop 2019; Weintrop et al. 2018; Weintrop and Wilensky 2015, 2019] on
transferring from (visual) blocked-based to textual languages has identi�ed many challenges.
Most of those challenges seem speci�c to block-based user interfaces, such as maintaining the
integrity of expressions, memorizing available syntactic constructs, and a strong tendency to solve
programming problems in a top-down approach. Most of these issues tie to the speci�c nature of
blocks, which is outside our scope.

Readers may also �nd two surveys useful. Kao et al. [2022] reviews computing education �ndings
on programming language transfer and the relevant literature from cognitive science. Tshukudu’s
dissertation [Tshukudu 2022] summarizes prior work on language transfer more broadly.

3 COMMON STUDY CONTEXT

Both studies were conducted in computer science courses at a selective private university in the
USA. They were embedded in courses and part of the course pedagogy. We discuss the study designs
and student populations in more detail alongside each study.
While Python and Racket are very large languages, students saw only limited aspects of them

in the respective courses. In Racket, they only saw the restricted, functional subsets presented by
language levels [Felleisen et al. 2018; Krishnamurthi 2001]. Although Pyret has stateful operators,
these were not shown (and accidental uses of state produce errors). In Python, students saw
traditional imperative programming, rather than more functional aspects like list comprehensions.
Our studies focused only on parts of these languages that were germane to the surrounding courses.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:4 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

fun g(l, n):

cases (List) l:

| empty => 0

| link(f, r) =>

(f * n) + g(r, n * 10)

end

end

g([list: 2, 3, 5], 1)

g([list: 7, 8], 1)

(define (h m x)

(if (empty? m)

0

(+ (* (first m) x)

(h (rest m) (* x 10)))))

(h '(4 2 6) 1)

(h '(5 3) 1)

Fig. 1. Racket-Pyret: Survey 1: Program Pair (this example is CaseList)

The study instruments are far too long to include in the paper. To aid reproducibility and interpreta-
tion, they are provided in full in the appendices. The paper contains excerpts so the reader can get a
sense of the nature of the questions.

4 STUDY 1: RACKET TO PYRET

4.1 Context for This Study

This study was part of an accelerated introductory course that students can place into. Placement
involves four weeks of self-study (with questions answered on a help forum) in How to Design
Programs [Felleisen et al. 2018], which uses Racket. Students covered chapters about basic data, lists,
recursion on lists, and higher-order functions, submitting several graded programming exercises.
This course is one of multiple routes into computer science, and students could take a less

demanding course if they wished. Therefore, some students did not complete the placement process.
This leads to some self-selection: students uncomfortable with Racket or programming functionally
may simply have dropped out of the class (and hence also the study).
The course had 70 students. Almost all (98%) had prior programming experience, typically in

Java/C#/C++ (91%) or Python (76%). 87% were “not familiar at all” with Pyret, 10% “slightly familiar”,
and only one student “moderately familiar” (presumably because they looked ahead to see what
the course would use). This programming background is typical for students taking advanced US
secondary school computing courses. The demographic—largely male and White or Asian—mirrors
this population. The background is likely to be a decent proxy for students who have had 1–2 years
of computing at the secondary or tertiary level.

4.2 Study Design

After students had completed the Racket assignments, we gave them Survey 1, overviewed in
Table 1. (Full programs are in Appendix A; an example is in Figure 1.) Students �rst predicted the
output of Pyret programs (but Pyret was presented not by name but as a “hypothetical language”
to make it unlikely students would just run the programs), then ones in Racket. Students were then
given isomorphic pairs of Pyret-Racket programs (as in Figure 1) to compare, inspired by the large
body of literature on contrasting cases [Gibson and Gibson 1955; Schwartz et al. 2011], which says
that people often provide deeper analyses when asked to compare multiple related objects.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:5

Table 1. Racket-Pyret: Survey 1: Overview

Question Answer Format

Pyret/Racket only
What is the (�rst/second/third) result?
When the program produces multiple out-
puts, there is one question for each result.

• I don’t know.
• It’s an error.
• It is NOT an error. (Please
specify the expected result
below.)

(Pyret-only) How con�dent are you in
your answer?

Only shown if they did not answer
“I don’t know” : (1-5) Not at all con-
�dent - Very con�dent

(Pyret-only) If there are parts of this pro-
gram that you �nd unclear, please de-
scribe them.

Text response

Pair comparison In what ways do these programs seem
similar and in what ways di�erent?

Text response

Do you �nd one of these programs
clearer than the other? If so, why?

Text response

You are welcome to comment on any
other experiences (programming in
other languages, other subjects, etc.)
that in�uence how you understand
these programs.

Text response

Background What class year are you? Elided: Various demographics rel-
evant to the institution

Do you have any programming back-
ground? (check all that apply)

Multiple-select: Web; Block lan-
guages; Python; Java, C#, and
C++; Matlab, Stata, or R; Other

How familiar are you with Pyret? Likert: (1-5) Not familiar at all -
Extremely familiar

Survey 1 (shown in full in Appendix A) covered the following concepts in both languages. These
were chosen to cover the main concepts students were already exposed to or might encounter.
(Names link to the program pairs presented in the appendix.)

• variable naming (Fun, Caret, and Hyphen)
• variable shadowing (ImpShadow and ExpShadow)
• de�ning a variable twice in a block (DefTwice)
• referencing a variable before its de�nition (EarlyUse)
• multi-armed conditionals (BasicCond and BadCond)
• conditionals in Racket versus pattern-matching in Pyret (CaseList, SymStr, and CaseStruct)
• accessing list contents using selectors (Racket) versus �elds (Pyret) (FirstRest and DotFirst)
• user-de�ned structures (Racket) versus algebraic data types (Pyret) (Struct1, Struct2, CaseS-
truct, and DotField)

• using selectors with higher-order functions (DotField)

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:6 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

• built-in testing constructs (Check)
• local variable de�nitions (LocalDef)

After Survey 1 was done, we wanted to address any misconceptions students had. There has
long been a debate about whether the best way to �x misconceptions is to not talk about them
(and thereby avoid reinforcing them) or to confront them directly. The research on refutation
texts [Posner et al. 1982] shows that it is better to address them explicitly.
Following this principle, after students completed Survey 1, we provided a refutation text to

correct any misconceptions they may have had. This document, shown in Appendix B, presents
the program pairs they had just seen, points out common misunderstandings we had seen of the
programs, and explains why the misunderstandings are wrong. The document’s design is based on
guidance given in a recent study [Weingartner and Masnick 2019], which shows the e�ectiveness
of refutation texts in physics. The document also explains that the “hypothetical language” is Pyret,
and tells them how they can experiment with it.
Two weeks later, we administered Survey 2 (Appendix C). The only programs on this survey

were variants (e.g., altering details to avoid recall e�ects) of those Pyret programs that students did
especially poorly on in Survey 1. Students were again asked to predict program outputs and to rate
their con�dence; the goal was to see whether the refutation text had helped and whether students
had retained its information. Students did not have any lectures between the two rounds.

4.3 Results & Discussion

Our goal was to study how well students can understand a new language, Pyret, relative to
their recent experience with Racket. Brie�y: students had almost no di�culty with this transition.
(Appendix D provides a detailed analysis.) As our Pyret-Python study yielded more interesting
results, we report only on concepts that proved challenging in the Racket study.

Three challenging programs re�ect syntactic oddities that may not generalize to other languages:

variable naming In Lispy syntax, variable names can contain carets: e.g., c^d. This is illegal
in traditional in�x syntaxes; in particular, ^ has a special meaning in Pyret (akin to the |>
operator in OCaml). Students had di�culty with this, either assuming the name was valid
or assuming ^ meant exponentiation (revealing their prior programming experience). In
contrast, students did not struggle with Pyret’s support for kebab-cased variable names
(e.g., my-account). While these are illegal in many common languages (including Java and
Python), students had used them extensively in Racket. This concept was not repeated in
Survey 2.

shadowing Pyret is a lexically-scoped, block-structured language. However, its designers
felt that implicit shadowing sometimes leads to bugs, so shadowing requires the use of a
shadow keyword at the binding site. Most students could not intuit this in Survey 1; their
understanding improved dramatically (18% → 90%) in Survey 2, presumably based on the
refutation text.

�eld access To access, say, the c �eld from a list of structures that contain it, one might want to
write map(.c, ...). This “naked” accessor is a syntax error in Pyret; it must be preceded by
a reference. Student performance on this improved only somewhat (13% → 44%) in Survey 2.

Of more interest are situations that might generalize to several languages and hence might bene�t
from clari�cation in manuals and instruction:

Multi-arm conditionals. In both Racket and Pyret, multi-armed conditionals are evaluated se-
quentially, �rst-to-last, and falling through produces an error. BadCond includes programs where
multiple predicates match and none do. While students generally correctly predicted the behavior,
they did so with low con�dence and also had several predictions that were incorrect but reasonable.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:7

Variable rede�nition. DefTwice de�nes a variable twice in a block, which is invalid in both
languages. Students’ comments suggested that they were uncertain about whether rede�nition
would mutate the variable or cause an error. In Racket, 54% thought it will mutate, while 43%
thought it would error (with 3% unsure). In Pyret, however, 87% predicted mutation and only
10% thought it would error (with 3% other answers). We conjecture this was caused by Pyret’s
syntactic similarity to prior imperative programming they had experienced, though we did not �nd
a statistically clear in�uence (Appendix D).
In Survey 2, where students only predicted Pyret programs, the percentage who chose error

climbed to 67%. Disappointingly, 28% still believed it would produce the answer dictated bymutation
(with 4% other answers). This suggests a persistent misconception. Fortunately, this triggers a
syntax error in Pyret, so students cannot program with this misunderstanding. Languages where
rede�nition silently takes one or the other value can likely lead to wrong programs that are very
di�cult for students to debug.

Pattern-matching. Pyret (unlike Racket) uses simple pattern-matching for algebraic datatypes.
CaseList (Fig. 1) shows the �rst context in which students encounter it: the cases keyword starts a
pattern-match, while empty and link are the two list constructors. While four students were unclear
on the meaning of cases, most (26 out of 30) students who answered the any-parts-unclear question
were confused about link. Students’ comments suggested that they attempted to (correctly) read the
cases expression as a conditional, but the link part as a function call. Some were then confused by
the presence of multiple names after link (both f and r, neither of which is the list, l). Despite this,
however, about two-thirds of students (67% and 66% for the �rst and second outputs respectively)
were able to intuit the intended semantics and correctly predict the answers for the programs.

Conventional wisdom assumes the intuitiveness of pattern-matching. This example suggests
that this may need to be more closely evaluated. One possible cause for confusion here is that, in
their prior Racket experience, students decomposed lists using conditionals with explicit predicates
(like empty?) applied to the data to distinguish the variants. They may have tried to apply a similar
interpretation here, even though it does not quite �t (due to the variables that would be unbound
by that interpretation). Interestingly, a later program (CaseStruct) used pattern-matching over a
datatype de�ned in the same program. Students predicted better (both outputs have a 93% correct
rate), and with slightly more con�dence, perhaps because they saw the datatype de�nition.

5 STUDY 2: PYRET TO PYTHON

5.1 Context for This Study

Unlike in the previous study, this one was run in an introductory course designed for students
with no prior experience; it has a reputation of being gentle in pace. The course followed a data-
centric viewpoint [Krishnamurthi and Fisler 2020]: it started with functional programming over
images and tables, then covered algebraic datatypes, including lists and trees. This part was done
in Pyret. Two-thirds of the way into the 3-month course, instruction switched to Python, covering
programming with state, dictionaries, and data analysis with Pandas.
170 of the 186 who �nished the course had submitted background surveys at the start of the

semester. Only 75 of the 170 reported having any prior programming experience. Forty of these
had used Python (others had varied background from Scratch through Java and C++). Among those
with prior Python experience, 10 reported being self-taught while 17 took an Advanced Placement
(AP in the USA), International Baccalaureate, or other college-level class. The others varied from
school coding clubs to other (pre-AP) classes in middle school or high school. Approximately 45%
were female-presenting and about 15–20% appeared to be US racial minorities.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:8 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

5.2 Broad Study Parameters

As in the previous study, we used reading tasks to assess students’ expectations of program behavior
in a new language (here, Python). We conducted this study in four phases. The �rst three phases
were administered within the course’s twice-weekly drills on lecture content. Drills were graded
on participation rather than correctness, yet they counted towards the �nal grade, so most students
did them.

Our initial set of programs was inspired by two sources: questions students asked on the course
help forum during previous iterations of the same course, and other di�erences between the
languages that we knew students would encounter given the course lectures and assignments (the
labels P1.n and P2.n reference Phases 1 and 2, respectively, along with the problem number):

(1) Python introduces mutable lists (P2.12)
(2) Python doesn’t check “type” annotations (P1.6, P1.7, P2.5, and P2.6)
(3) Python introduces return (P1.1, P1.3, and P2.1)
(4) Python introduces print (P1.2 and P2.2)
(5) Python allows rede�nition of variables (P1.10 and P2.8)
(6) whitespace indentation matters in Python (P1.4, P1.5, P2.3, and P2.4)
(7) if is an expression in Pyret and statement in Python (P1.8, P1.9, and P2.7)
(8) Python overloads operators like * (P1.6, P1.7, P2.5, and P2.6)
(9) Python has scoping vagaries [Guth 2013; Politz et al. 2013], like lifting bindings (P1.9)
(10) Python introduces for-loops, which can be confusing when combined with return and print

(P2.9, P2.10, and P2.11)

The full programs (Table 5) and other parts of Phases 1 & 2 are provided in Appendix E. We provide
representative excerpts in the paper.

5.3 Phase 1

>>> x = 2

>>> def get_x():

... return x

...

>>> get_x()

2

>>> x = 3

??????

>>> get_x()

??????

>>>

Fig. 2. Pyret-Python: Phase 1

(this example is P1.10)

Before the course transitioned to Python, the professor informed
students that they wanted to gather data to guide subsequent lec-
ture design. They were asked to predict the behavior of Python
programs prior to learning the language in class. Questions were
presented in the form shown in Figure 2, where students were given
multiple choices for what appears in the space indicated by ??????.
(This format, with a REPL interaction, was chosen intentionally to
make it possible to cover both printed output and returned values.)

In the �rst phase, students were given 10 programs. They could
choose multiple answers, but if they did so, they were asked to
explain why they were uncertain. 171 students submitted responses.
Most (84% and 81%) students correctly answered P1.3 (about ba-
sic use of return) and P1.9 (about lifting de�nitions within if).
More than half generally predicted the e�ect of rede�nition (Fig-
ure 2) correctly: 68% predicted that rede�nition produces nothing;
59% predicted the consequence of the variable updating. About
half (54%) answered both parts correctly. However, for the other 7
programs, fewer than 25% of students predicted the correct answer.
Students with some Python background were more likely to give correct answers to almost all

programs. (See Appendix G for statistical analysis.) However, even those students did poorly on
the 7 di�cult questions: no more than 30% answered any one of those correctly.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:9

The concept of rede�nition also appears in the Racket-Pyret study (DefTwice). We compare the
two studies on this aspect at the end of the next subsection.

5.4 Phase 2

Between Phase 1 and Phase 2, students were given three lectures on how to translate Pyret programs
they had written into Python. The lectures were informed by the above problems. The second
phase used the same format as the �rst, this time with 12 programs. Eight were variants of the
programs on which students performed poorly in the �rst phase. The other four covered for-loops,
variable mutation, and list mutation. for-loops had been covered in lecture, as had dataclasses and
mutable �elds; the course had not yet covered mutation to lists or variables.

Results. 148 students submitted responses. Three observations re�ected cases that we expected
students to improve on with practice:

• Students strongly (71% students in Phase 1 and 57% in Phase 2) expected type annotations to
be checked, i.e., a program that violates an annotation should fail with an error. Pyret can be
run with or without static type-checking; either way, at least the top-level of an annotation
is enforced (if only dynamically). Thus, students may have expected to see the similar syntax
in Python have similar behavior. Python, however, does not check annotations!

• When a variable is seemingly1 introduced inside an if and used after the if-block, most (80%)
students expected it to be de�ned at use. This is true in Python, though not in Pyret. This
could, however, re�ect a dynamic scoping misconception [Fisler et al. 2017].

• Students improved (P1.10→P2.8) their understanding of rede�nition: more students (68% →

81%) predicted that variable rede�nition is valid; and more students (59% → 75%) predicted
that rede�nition changes the value of variables referred to by a previously de�ned function.
Note that whether rede�nition is predicted to be valid varies in student populations and in
languages. In Survey 1 of Racket-Pyret, 54% students predicted that rede�nition is valid in
Racket, and 87% students predicted so in Pyret (DefTwice). The Racket-Pyret programs do
not, however, include functions.

Other issues became the subjects of programs in the remaining phases, as described below.

5.5 Phase 3

Given that students had failed to improve signi�cantly on many common questions between
Phases 1 and 2, we designed the third phase to use a di�erent question format: each question gave a
potential answer that the program would not produce and asked students to “explain the problem as
best as you can, as if you were helping your friend debug their code” (see Figure 3 for an example).
This phase tested three programs on which students had performed poorly in Phase 1 and Phase 2
(see Figure 4). Between Phases 2 and 3, students had four more lectures (covering mutable variables,
mutable lists, and aliasing), and a homework assignment on Python programming.

Results. The nature of the prompt meant we could analyze student responses along two dimen-
sions: whether their explanation was correct and whether any �x they proposed (which was often
given though not required) would actually address the problem.

We randomly sampled 30 of the 137 responses for detailed analysis. Two authors iteratively arrived
at codes [Richards and Hemphill 2018] with perfect agreement, re�ecting the above dimensions,
shown in Appendix F. Afterwards, one of these authors eyeballed the remaining 107 responses to
con�rm that we had covered the set of answers.

1Python lifts the variable introduction to the top of the function block, so it is actually de�ned for the entire function.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:10 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Fig. 3. Pyret-Python: Phase 3: �estion (this example is program (A) from Figure 4)

(A) desired answer: 7

>>> def f(n):

... print(n + 4)

...

>>> f(2) + 1

(B) desired answer: 5

>>> def g(x):

... return

... x - 10

...

>>> g(15)

(C) desired answer: 24

>>> def f(n, x):

... v = n + x

... return v + v

>>> f(7, 5)

Fig. 4. Pyret-Python: Phase 3: Programs

We discuss the three programs (Figure 4) individually:

(A) The problem here is confusing print with return. Most (about 86%) students correctly
observed that a return is needed in the function. Only about 43% students provided enough
detail in their explanations for us to infer their mental models of print. Unfortunately, most
of these mental models are at least subtly wrong. Only about 7% correctly observed that
print only displays an answer and does not return a value, and because f lacks a return,
it will return None. About 20% claimed that the function will return the value of the print,
which is None. Note that this is subtly incorrect, and could cause confusion in other contexts.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:11

(A)

a = 2 + 3

return a

(B)

def f(a, b):

s = a + b

f(2, 3)

print(s)

(C)

def word_double(word: str):

result = ''

for letter in word:

result = result + letter + letter

return result

print(word_double('exam'))

Fig. 5. Pyret-Python: Final Exam: Relevant �estions

About 7% were much farther o�, claiming that the problem was that f would return the value
of print, which was a string, which could not be added to a number. About 10% e�ectively
believed print would terminate the program! Students who provided incorrect explanations
suggested a long tail of other misconceptions.

(B) Almost all (90%) students correctly surmised that the return on its own would return None,
which is correct; they also suggested the correct repair. However, this masks a misconception:
about 7% incorrectly believed that x - 10 would evaluate, but its value would be ignored.

(C) This program produced a wide range of answers that are hard to group accurately. About 10%
said they were unsure why the program doesn’t work as desired. Super�cially, 57% correctly
noted that the program has an indentation error. However, there were (also) numerous
explanations that suggested a variety of misconceptions. Some believed the function ended
at the assignment to v, and that the top-level return is syntactically valid. Some believed the
function would return 12; some an error because a function can’t “return” a de�nition. (It
is noteworthy that a corresponding Pyret function would give a syntax error because the
function has no body expression.) Many students believed the problem is that the call to f

should be surrounded by a print. Some also believed the return should be replaced with
print. Most surprising of all, some students believed a problem is that v cannot be used twice,
revealing an odd “linearity” misconception not previously seen in the literature. (Perhaps
these are budding Rust programmers?)

5.6 Phase 4

Phase 4 was part of the �nal exam. Between Phase 3 and the exam, students had six additional
lectures (on dictionaries and Pandas). They also completed a larger programming project (again,
using dictionaries and Pandas) prior to taking the �nal.
Final exam time limitations meant we could not exercise all the preceding topics. We therefore

tested three programs that further investigate the most persistent issues we observed from the
earlier phases; the exam programs are in Figure 5. The exam asked students to provide exactly one
result for each program (free-form, not multiple choice), providing either an answer, “nothing” (for
None), or an error (with a brief description of the problem).

Results. We now discuss each of the �nal exam questions in turn:

(A) This program is erroneous: the top-level cannot return. We added this new program because
some wrong answers in earlier phases suggested that many students hadn’t realized that
return is associated with functions. Indeed, 53% responded with 5 and 26% with “nothing”.
Only 23% said it would produce an error. 85% of them identi�ed the correct problem.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:12 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

(B) We added this new program because prior research [Fisler et al. 2017] as well as comments
on multiple earlier programs suggested the possibility of a dynamic scope misconception.
Indeed, 19% of students thought this would produce 5. 74% correctly identi�ed that this
program has an error, of whom 85% identi�ed the right problem (that s is not in scope).
There were also a handful of arguably fanciful semantic interpretations such as: print would
work if s had been returned. This confusion could be caused by the sloppy use of words and
incorrectly suggestive syntax: e.g., when we write return s, Python returns the value of s,
not the variable.

(C) This programwill run without error, but double only the �rst letter (“ee”). Only 17% correctly
predicted this output. Arguably, the name of the function suggests this is incorrect: that
the whole word should be “doubled”. By that interpretation, the function arguably contains
a “premature” return. Indeed, 33% expected the value that would be returned if the return

were out-dented by one level, “eexxaamm”, while 7% expected “examexam”. Many students
expected this program to error: because a for-loop cannot iterate over a string, letter is
unde�ned, + does not work over strings, etc. Most interestingly, 8% thought it would produce
the error that the return was incorrectly indented! One reason might be that they were
accustomed to only certain patterns of where return occurs, and expected a checker for
those. More intriguingly, students may have noticed the mismatch between the function’s
name and its code. While this may seem fanciful, Roy Pea has documented such phenomena,
which he calls “superbugs” [Pea 1986]: “the idea that there is a hidden mind somewhere in
the programming language that has intelligent, interpretive powers” (emphasis in original).

Overall, we see that even after a month of Python education and practice, students have di�culty
with certain rudimentary aspects of Python, particularly surrounding return. Students seem to
expect automatic returns (as in Pyret) where Python expects them to write one explicitly. This
questions whether the approach taken by most functional languages—to always return the last
value—may be a more predictable and less error-prone design.

In addition, we see enormous confusion between returning and printing. As we noted, some
students even think that print prints and then halts the program, though many more think it
would both print and return a value. (Incidentally, the latter is what Pyret’s print function—
which students were not shown—does, which also makes it useful for ad hoc debugging.) In many
traditional imperative curricula, functions by novices rarely return values, which may sidestep this.
However, this of course leads to non-compositional code. In contrast, most functional curricula
sidestep this problem in the other way, by focusing on returning and composing values rather than
printing them. Given that modern programming libraries are full of value-returning functions as
well as higher-order functions, this may well be a much better foundation.

Inasmuch as a language wants to support both printing and returning, it seems important that
these outputs be noticeably distinct. The DrRacket IDE, for instance, uses di�erent colors for printed
output and returned values. No study has examined whether the di�erence is salient to users, but
it would appear to be a step in the right direction. Pyret uses a slightly di�erent design: because
printing is often used as a debugging device, beyond print, it provides a special syntactic construct,
spy. The output from this is presented graphically, with a reference back to the source location,
and “spied” values are printed using the value-renderer, enabling user interaction (e.g., expanding
and collapsing values, changing numeric representations, etc.). Again, we are not aware of formal
studies on this user interface, but it suggests another design for avoiding this confusion.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



What Happens When Students Switch (Functional) Languages (Experience Report) 215:13

6 DISCUSSION & CONCLUSION

Swapping Language Order. It would be interesting to consider swapping language order. However,
pedagogically, we felt it would not make sense for us to put Python before Pyret:

(1) Pyret o�ers lightweight support for images, tables, etc., while Python has libraries needed for
large-scale data processing. Therefore, there is a natural transition from “pleasant language
designed for smaller data” to “industrial language that handles large data”. Going in the other
direction made less sense for our use.

(2) We feel (and the data don’t contradict this) that starting functionally is simpler, especially for
data processing.

(3) If we start with Python, that gives a signi�cant leg up (at least in their perception) to
students with Python experience. This can cause those students to show o� in class, students
without that background to drop out, etc. (The impact would likely be disproportionately
on underrepresented students.) Pyret, whatever its other virtues, at least o�ers a more level
playing �eld.

Controlled Experiments. This paper is an experience report, not a report on controlled experiment.
There are real di�culties to performing them:

(1) Those controls are not easy to obtain in our setting. For instance, it is impossible to mean-
ingfully A/B test in a class with one section (since there would be too much communication
between the populations).
We did not administer language pre-tests because doing so would have caused some students
to think they needed to know that language at the start, and less con�dent students would
have dropped the classes (and these would disproportionately be from underrepresented
backgrounds). This is especially true for the Pyret-Python study, where students are aware
that Python is sometimes taught in secondary schools, and may therefore have felt they could
only take the course if they already knew some of it. As educators, we followed a Hippocratic
principle, sacri�cing the knowledge gained from a pre-/post-test in return for reaching the
most students.

(2) The alternative is a “lab study”, where no subject’s education/career is on the line, and we can
control everything. Doing this is much harder than it might appear. First, getting participants
to attend studies of more than 30-45 minutes is di�cult. However, very little learning can
happen in that time. Second, it is di�cult to get participants to return to follow-up sessions.
Without it, we can’t measure long-term learning, nor can we design a reactive study (design
new phases based on the outcome of earlier phases). For these and other reasons, a controlled
version of our Pyret-Python study would be extremely di�cult (and would lack ecological
validity).

Rather, we believe that our study designs, instruments, and initial �ndings are still very useful for
people to create variants for their settings. Over time we will hopefully build a modern body of
knowledge on this topic.

Relating to Transfer. Our Racket-Pyret study stands in interesting contrast to Tshukudu [2022],
who argues that there should be little or no transfer when the syntax is di�erent. We have refrained
from making strong statements about transfer because students’ prior knowledge could be a factor.
In either case, we believe there is a need for a richer framework for talking about these phenomena.
In particular, irrespective of our “expert” judgment on similarity and di�erence, if students perceive
languages to be similar, irrespective of syntax, they can construct analogies between them and
carry ideas across using these analogies, in the style suggested by Gentner [1983] and others.

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.



215:14 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

In both studies, most new concepts are unsurprisingly challenging for students. In the Racket-
Pyret study, the challenging new concepts tend to be somewhat obscure issues that would not arise
often. In contrast, some new concepts like pattern-matching over algebraic data types do not seem
particularly challenging. It is, of course, possible that students are using contextual clues to make
sense of the program as a whole. Nevertheless, these su�ce to make accurate predictions.

The Pyret-Python study involves many new concepts in Python: statements, explicit returning,
printing, and mutation. Almost all these concepts are challenging. In our simple examples, variable
rede�nition and some lifting of variable de�nitions are not challenging, but if we were to use these
features in more and di�erent ways, students may not perform as well; prior research documents
di�culties with aliasing and mutation even for more advanced students [Fisler et al. 2017].

Prior Student Experience. One important di�erence between our two studies is that many of the
Racket-Pyret students had prior programming experience. It is possible that that experience is
what made the transition to Pyret easy. (Indeed, they may have viewed Pyret through a Pythonic
lens and thus understood it easily.) With our student populations, it was di�cult to control for
this. However, other institutions that use similar languages (e.g., Racket combined with a more
traditional in�x language, whether Pyret or OCaml or the like) would be in a good position to study
something closer to our Pyret-Python condition.

More broadly, any attempt to view post-secondary school students as a “tabula rasa” will increas-
ingly fail in many educational systems. Students around the world are being exposed to computing
in schools from an early age. Indeed, our project originally set out to measure transfer e�ects from
one language to the other. This is much easier to do when students have no prior programming.
However, students in various places now have a little or even a lot of programming background
before tertiary education, typically of an imperative nature in Scratch [Maloney et al. 2010; Resnick
et al. 2009] or Python. We thus have to take into account the sum of all prior in�uences.

Conclusion. Overall, we believe our work adds useful new data to the literature on learning new
languages. First, it introduces these ideas to functional programming educators, providing some
preliminary methods about how we might go about investigating the issues that arise. Second,
it provides concrete data about pairs of potentially-interesting languages. Third, it seemingly
contradicts prior work, which suggests that far more study is necessary. Finally, it provides evidence
for di�culties in Python that are not present in more functional languages.

ACKNOWLEDGMENTS

We are extremely grateful to our reviewers for their close reading and many questions and sug-
gestions. We thank the US NSF for support under Grant No.: 2227863. The authors gratefully
acknowledge Schloss Dagstuhl for Seminar 22302, through which the second and third authors
�rst met the fourth. The idea for this paper came about over conversations during breaks at an
outside table at the Schloss.

REFERENCES

Dibyendu Brinto Bose, Gerald C Gannod, Akond Rahman, and Kaitlyn Cottrell. 2022. What Questions Do Developers Ask

about Julia?. In Proceedings of the 2022 ACM Southeast Conference (ACM SE ’22). Association for Computing Machinery,

New York, NY, USA, 224–228. https://doi.org/10.1145/3476883.3520205

Paul Denny, Brett A. Becker, Nigel Bosch, James Prather, Brent Reeves, and Jacqueline Whalley. 2022. Novice Re�ections

During the Transition to a New Programming Language. In Proceedings of the 53rd ACM Technical Symposium on Computer

Science Education - Volume 1 (SIGCSE 2022, Vol. 1). Association for Computing Machinery, New York, NY, USA, 948–954.

https://doi.org/10.1145/3478431.3499314

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

https://doi.org/10.1145/3476883.3520205
https://doi.org/10.1145/3478431.3499314


What Happens When Students Switch (Functional) Languages (Experience Report) 215:15

Alejandro Espinal, Camilo Vieira, and Valeria Guerrero-Bequis. 2022. Student Ability and Di�culties with Transfer from a

Block-Based Programming Language into Other Programming Languages: A Case Study in Colombia. Computer Science

Education (2022), 1–33. https://doi.org/10.1080/08993408.2022.2079867

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2018. How to Design Programs: An

Introduction to Programming and Computing (2 ed.). MIT Press. https://htdp.org/

Kathi Fisler, Shriram Krishnamurthi, Benjamin S. Lerner, and Joe Gibbs Politz. 2023. A Data-Centric Introduction to Computing

(2023-02-21 ed.). https://dcic-world.org/

Kathi Fisler, Shriram Krishnamurthi, and Preston Tunnell Wilson. 2017. Assessing and Teaching Scope, Mutation, and

Aliasing in Upper-Level Undergraduates. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer

Science Education (SIGCSE ’17). Association for Computing Machinery, New York, NY, USA, 213–218. https://doi.org/10.

1145/3017680.3017777

Max Fowler, David H. Smith IV, Mohammed Hassan, Seth Poulsen, Matthew West, and Craig Zilles. 2022. Reevaluating the

Relationship between Explaining, Tracing, and Writing Skills in CS1 in a Replication Study. Computer Science Education

32, 3 (July 2022), 355–383. https://doi.org/10.1080/08993408.2022.2079866

Diana Franklin, Charlotte Hill, Hilary A. Dwyer, Alexandria K. Hansen, Ashley Iveland, and Danielle B. Harlow. 2016.

Initialization in Scratch: Seeking Knowledge Transfer. In Proceedings of the 47th ACM Technical Symposium on Computing

Science Education (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA, 217–222. https://doi.org/10.

1145/2839509.2844569

Dedre Gentner. 1983. Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science 7, 2 (1983), 155–170.

https://doi.org/10.1016/S0364-0213(83)80009-3

James J. Gibson and Eleanor J. Gibson. 1955. Perceptual Learning: Di�erentiation or Enrichment? Psychological Review 62, 1

(1955), 32–41. https://doi.org/10.1037/h0048826

Dwight Guth. 2013. A Formal Semantics of Python 3.3. Ph. D. Dissertation. University of Illinois at Urbana-Champaign.

https://hdl.handle.net/2142/45275

Yvonne Kao, Bryan Matlen, and David Weintrop. 2022. From One Language to the Next: Applications of Analogical Transfer

for Programming Education. ACMTransactions on Computing Education 22, 4 (2022), 1–21. https://doi.org/10.1145/3487051

Claudius M. Kessler and John R. Anderson. 1986. Learning Flow of Control: Recursive and Iterative Procedures. Hu-

man–Computer Interaction 2, 2 (June 1986), 135–166. https://doi.org/10.1207/s15327051hci0202_2

Michael Kölling, Neil CC Brown, and Amjad Altadmri. 2015. Frame-Based Editing: Easing the Transition from Blocks to

Text-Based Programming. In Proceedings of the Workshop in Primary and Secondary Computing Education (WiPSCE ’15).

Association for Computing Machinery, New York, NY, USA, 29–38. https://doi.org/10.1145/2818314.2818331

Shriram Krishnamurthi. 2001. Linguistic Reuse. Ph. D. Dissertation. Rice University, United States – Texas. https:

//scholarship.rice.edu/handle/1911/17993

Shriram Krishnamurthi and Kathi Fisler. 2020. Data-Centricity: A Challenge and Opportunity for Computing Education.

Commun. ACM 63, 8 (July 2020), 24–26. https://doi.org/10.1145/3408056

Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Relationships between Reading, Tracing and

Writing Skills in Introductory Programming. In Proceedings of the Fourth International Workshop on Computing Education

Research (ICER ’08). Association for Computing Machinery, New York, NY, USA, 101–112. https://doi.org/10.1145/

1404520.1404531

John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and Evelyn Eastmond. 2010. The Scratch Programming

Language and Environment. ACM Transactions on Computing Education (TOCE) 10, 4 (2010), 1–15. https://doi.org/10.

1145/1868358.1868363

Luke Moors, Andrew Luxton-Reilly, and Paul Denny. 2018. Transitioning from Block-Based to Text-Based Programming

Languages. In 2018 International Conference on Learning and Teaching in Computing and Engineering (LaTICE). IEEE,

57–64. https://doi.org/10.1109/LaTICE.2018.000-5

Roy D. Pea. 1986. Language-Independent Conceptual “Bugs” in Novice Programming. Journal of educational computing

research 2, 1 (1986), 25–36. https://doi.org/10.2190/689T-1R2A-X4W4-29J2

Joe Gibbs Politz, Alejandro Martinez, Mae Milano, Sumner Warren, Daniel Patterson, Junsong Li, Anand Chitipothu, and

Shriram Krishnamurthi. 2013. Python: The Full Monty. In Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages & Applications (OOPSLA ’13). Association for Computing Machinery,

New York, NY, USA, 217–232. https://doi.org/10.1145/2509136.2509536

George J. Posner, Kenneth A. Strike, Peter W. Hewson, and William A. Gertzog. 1982. Accommodation of a Scienti�c

Conception: Toward a Theory of Conceptual Change. Science Education 66, 2 (1982), 211–227. https://doi.org/10.1002/

sce.3730660207

Kris Powers, Stacey Ecott, and Leanne M. Hirsh�eld. 2007. Through the Looking Glass: Teaching CS0 with Alice. ACM

SIGCSE Bulletin 39, 1 (March 2007), 213–217. https://doi.org/10.1145/1227504.1227386

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

https://doi.org/10.1080/08993408.2022.2079867
https://htdp.org/
https://dcic-world.org/
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1145/3017680.3017777
https://doi.org/10.1080/08993408.2022.2079866
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1145/2839509.2844569
https://doi.org/10.1016/S0364-0213(83)80009-3
https://doi.org/10.1037/h0048826
https://hdl.handle.net/2142/45275
https://doi.org/10.1145/3487051
https://doi.org/10.1207/s15327051hci0202_2
https://doi.org/10.1145/2818314.2818331
https://scholarship.rice.edu/handle/1911/17993
https://scholarship.rice.edu/handle/1911/17993
https://doi.org/10.1145/3408056
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1404520.1404531
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1109/LaTICE.2018.000-5
https://doi.org/10.2190/689T-1R2A-X4W4-29J2
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1002/sce.3730660207
https://doi.org/10.1002/sce.3730660207
https://doi.org/10.1145/1227504.1227386


215:16 Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu

Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner,

Eric Rosenbaum, Jay Silver, and Brian Silverman. 2009. Scratch: Programming for All. Commun. ACM 52, 11 (2009),

60–67. https://doi.org/10.1145/1592761.1592779

K. Andrew R. Richards and Michael A. Hemphill. 2018. A Practical Guide to Collaborative Qualitative Data Analysis. Journal

of Teaching in Physical education 37, 2 (2018), 225–231. https://doi.org/10.1123/jtpe.2017-0084

Igor Moreno Santos, Matthias Hauswirth, and Nathaniel Nystrom. 2019. Experiences in Bridging from Functional to

Object-Oriented Programming. In Proceedings of the 2019 ACM SIGPLAN Symposium on SPLASH-E (SPLASH-E 2019).

Association for Computing Machinery, New York, NY, USA, 36–40. https://doi.org/10.1145/3358711.3361628

Jean Scholtz and SusanWiedenbeck. 1990. Learning Second and Subsequent Programming Languages: A Problem of Transfer.

International Journal of Human-Computer Interaction 2, 1 (1990), 51–72. https://doi.org/10.1080/10447319009525970

Jean Scholtz and Susan Wiedenbeck. 1991. Learning a New Programming Language: A Model of the Planning Process.

In Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, Vol. 2. IEEE, 3–12.

https://doi.org/10.1109/HICSS.1991.183956

Jean Scholtz and Susan Wiedenbeck. 1992. An Analysis of Novice Programmers Leaming a Second Language. In Empirical

Studies of Programmers: Fifth Workshop (PPIG 1992). 187–205. https://ppig.org/papers/1992-ppig-4th-scholtz/

Jean Scholtz and Susan Wiedenbeck. 1993. Using Unfamiliar Programming Languages: The E�ects on Expertise. Interacting

with Computers 5, 1 (March 1993), 13–30. https://doi.org/10.1016/0953-5438(93)90023-M

Daniel L. Schwartz, Catherine C. Chase, Marily A. Oppezzo, and Doris B. Chin. 2011. Practicing versus Inventing with

Contrasting Cases: The E�ects of Telling First on Learning and Transfer. Journal of educational psychology 103, 4 (2011),

759. https://doi.org/10.1037/a0025140

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We Go Again: Why Is It Di�cult for Developers

to Learn Another Programming Language?. In Proceedings of the ACM/IEEE 42nd International Conference on Software

Engineering (ICSE ’20). Association for Computing Machinery, 691–701. https://doi.org/10.1145/3377811.3380352

The Pyret Crew. [n. d.]. The Pyret Programming Language. http://pyret.org

Ethel Tshukudu. 2019. Towards a Model of Conceptual Transfer for Students Learning New Programming Languages.

In Proceedings of the 2019 ACM Conference on International Computing Education Research (ICER ’19). Association for

Computing Machinery, New York, NY, USA, 355–356. https://doi.org/10.1145/3291279.3339437

Ethel Tshukudu. 2022. Understanding Conceptual Transfer in Students Learning a New Programming Language. Ph. D.

Dissertation. University of Glasgow. https://theses.gla.ac.uk/82984/

Ethel Tshukudu and Quintin Cutts. 2020a. Semantic Transfer in Programming Languages: Exploratory Study of Relative

Novices. In Proceedings of the 2020 ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE

’20). Association for Computing Machinery, New York, NY, USA, 307–313. https://doi.org/10.1145/3341525.3387406

Ethel Tshukudu and Quintin Cutts. 2020b. Understanding Conceptual Transfer for Students Learning New Program-

ming Languages. In Proceedings of the 2020 ACM Conference on International Computing Education Research (ICER ’20).

Association for Computing Machinery, New York, NY, USA, 227–237. https://doi.org/10.1145/3372782.3406270

Ethel Tshukudu, Quintin Cutts, and Mary Ellen Foster. 2021a. Evaluating a Pedagogy for Improving Conceptual Transfer and

Understanding in a Second Programming Language Learning Context. In Proceedings of the 21st Koli Calling International

Conference on Computing Education Research (Koli Calling ’21). Association for Computing Machinery, New York, NY,

USA, 1–10. https://doi.org/10.1145/3488042.3488050

Ethel Tshukudu, Quintin Cutts, Olivier Goletti, Alaaeddin Swidan, and Felienne Hermans. 2021b. Teachers’ Views and

Experiences on Teaching Second and Subsequent Programming Languages. In Proceedings of the 17th ACM Conference on

International Computing Education Research (ICER 2021). Association for Computing Machinery, New York, NY, USA,

294–305. https://doi.org/10.1145/3446871.3469752

Ethel Tshukudu and Siri Annethe Moe Jensen. 2020. The Role of Explicit Instruction on Students Learning Their Second

Programming Language. InUnited Kingdom& Ireland Computing Education Research Conference. (UKICER ’20). Association

for Computing Machinery, New York, NY, USA, 10–16. https://doi.org/10.1145/3416465.3416475

Karen P. Walker and Stephen R. Schach. 1996. Obstacles to Learning a Second Programming Language: An Empirical Study.

Computer Science Education 7, 1 (Jan. 1996), 1–20. https://doi.org/10.1080/0899340960070101

Kristin M. Weingartner and Amy M. Masnick. 2019. Refutation Texts: Implying the Refutation of a Scienti�c Misconception

Can Facilitate Knowledge Revision. Contemporary Educational Psychology 58 (July 2019), 138–148. https://doi.org/10.

1016/j.cedpsych.2019.03.004

David Weintrop. 2019. Block-Based Programming in Computer Science Education. Commun. ACM 62, 8 (July 2019), 22–25.

https://doi.org/10.1145/3341221

David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and Diana Franklin. 2018. Starting from Scratch: Outcomes of

Early Computer Science Learning Experiences and Implications for What Comes Next. Proceedings of the 2018 ACM

Conference on International Computing Education Research (Aug. 2018), 142–150. https://doi.org/10.1145/3230977.3230988

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1123/jtpe.2017-0084
https://doi.org/10.1145/3358711.3361628
https://doi.org/10.1080/10447319009525970
https://doi.org/10.1109/HICSS.1991.183956
https://ppig.org/papers/1992-ppig-4th-scholtz/
https://doi.org/10.1016/0953-5438(93)90023-M
https://doi.org/10.1037/a0025140
https://doi.org/10.1145/3377811.3380352
http://pyret.org
https://doi.org/10.1145/3291279.3339437
https://theses.gla.ac.uk/82984/
https://doi.org/10.1145/3341525.3387406
https://doi.org/10.1145/3372782.3406270
https://doi.org/10.1145/3488042.3488050
https://doi.org/10.1145/3446871.3469752
https://doi.org/10.1145/3416465.3416475
https://doi.org/10.1080/0899340960070101
https://doi.org/10.1016/j.cedpsych.2019.03.004
https://doi.org/10.1016/j.cedpsych.2019.03.004
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3230977.3230988


What Happens When Students Switch (Functional) Languages (Experience Report) 215:17

David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to Compare Conceptual Understanding in

Blocks-based and Text-based Programs. In Proceedings of the Eleventh Annual International Conference on International

Computing Education Research (ICER ’15). Association for Computing Machinery, New York, NY, USA, 101–110. https:

//doi.org/10.1145/2787622.2787721

David Weintrop and Uri Wilensky. 2019. Transitioning from Introductory Block-Based and Text-Based Environments to

Professional Programming Languages in High School Computer Science Classrooms. Computers & Education 142 (2019),

103646. https://doi.org/10.1016/j.compedu.2019.103646

Susan Wiedenbeck and Jean Scholtz. 1996. Adaptation of Programming Plans in Transfer between Programming Languages:

A Developmental Approach. In Empirical Studies of Programmers: Sixth Workshop. Ablex Norwood, NJ, 233–253.

Quanfeng Wu and John R. Anderson. 1990. Problem-Solving Transfer Among Programming Languages. Technical Report.

Carnegie Mellon University. https://apps.dtic.mil/sti/citations/ADA225798

Received 2023-03-01; accepted 2023-06-27

Proc. ACM Program. Lang., Vol. 7, No. ICFP, Article 215. Publication date: August 2023.

https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1145/2787622.2787721
https://doi.org/10.1016/j.compedu.2019.103646
https://apps.dtic.mil/sti/citations/ADA225798

	Abstract
	1 Introduction
	2 Related Work
	3 Common Study Context
	4 Study 1: Racket to Pyret
	4.1 Context for This Study
	4.2 Study Design
	4.3 Results & Discussion

	5 Study 2: Pyret to Python
	5.1 Context for This Study
	5.2 Broad Study Parameters
	5.3 Phase 1
	5.4 Phase 2
	5.5 Phase 3
	5.6 Phase 4

	6 Discussion & Conclusion
	Acknowledgments
	References

