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Abstract
Splitting a language into a core language and a desugaring
function makes it possible to produce tractable semantics
for real-world languages. It does so by pushing much of the
language’s complexity into desugaring. This, however, pro-
duces large and unwieldy core programs, which has proven
to be a significant obstacle to actual use of these semantics.

In this paper we analyze this problem for a semantics
of JavaScript. We show that much of the bloat is seman-
tic bloat: a consequence of the language’s rich semantics.
We demonstrate how assumptions about language use can
confine this bloat, and codify these through several trans-
formations that, in general, do not preserve the language’s
semantics. We experimentally demonstrate the effectiveness
of these transformations. Finally, we discuss the implications
of this work on language design and structure.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

1. Desugared Semantics in Practice
Programming language semantics research has a venera-
ble tradition of describing a language by defining a small
core and a desugaring function that maps surface programs
into the core [17]. This approach has been used to define
numerous languages such as ML [21]. More recently, it
has been used in conjunction with tested semantics (ap-
pendix B) to describe the semantics of many scripting lan-
guages [3, 11, 13, 22, 23]. The resulting semantics, such as
λJS, have been used to build a variety of tools (such as type
checkers and security analyses), and have seen attempted
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adoption by many research groups in universities and indus-
trial labs.

It is easy to see the benefits of using a desugared seman-
tics for scripting languages. These languages have a large
quantity of implicit and overloaded behavior, each of which
would have to be handled directly by tools. By using desug-
aring, all these behaviors are made explicit, and the resulting
operations can have much simpler behavior. The use of test-
ing helps confirm that the semantics has not left out any im-
portant behavior. The tool-builder can then write programs
over a much simpler language, resting assured that all the
behaviors of the surface language have been handled.

This is the appeal—in principle. It resulted in several po-
tential users, from universities and industrial labs, examining
these semantics and trying to build on them. This would ap-
pear to represent a success story. In practice, however, many
users have found the semantics difficult to adopt, and have
even abandoned them. This paper explains the problem they
have encountered, and presents a significant step towards ad-
dressing their problem. At its heart is an idea that many se-
manticists would find repugnant: program transformations
that are intentionally not semantics-preserving.

2. Semantic Bloat Causes Code Bloat
The central problem is a very simple one: code bloat. To
make this visceral, we present an example in λS5 [22], a
semantics of the strict-mode of ECMAScript 5 language.
(Strict mode is a restriction of the language, implemented
by browsers. It disallows some of JavaScript’s more unsa-
vory behavior, such as using undeclared variables, assign-
ing to a read-only property, or using the dynamically scoped
with statement.) Consider function iden(x){return x;}. It
desugars to the 41 lines of code in fig. 1. We explain this
desugared program in detail in section 2.2.

This explosion of code presents a tremendous challenge
to the user of the semantics. The problem is not what the
reader might imagine, which is that tools become slower
because programs get large: because this represents the true
meaning of the given JavaScript fragments, this state space
must somehow be explored, whether in the source of the core
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program or within the tool. In fact, the traversal time has not
been a problem in practice in the tools we have built.

Rather, the real problems are the interlinked ones of com-
prehension and debugging. Building sophisticated tools is
a complex activity; sometimes the tool itself may be do-
ing something novel, and is hence difficult in its own right.
Therefore, when things go wrong, it is vital to be able to
produce small inputs and carefully trace their treatment. If
even tiny JavaScript fragments produce output this large, the
desugared semantics switches from being an aid to an active
obstacle for the tool-builder.

Responding to this user feedback, we have performed an
extensive study of the causes of code bloat in desugaring
output. We found the primary cause to be semantic bloat:
the inflation of code necessary to handle complicated lan-
guage features. The solution is therefore simple: instead of
considering the full semantics of the language, consider re-
strictions on the semantics. These restrictions would result
in programs having fewer behaviors, which ought to result
in much smaller desugared output.1

We could make this argument in the abstract, but we feel
it better to make it concrete. By applying it to λS5, a real
semantics, we can measure the exact effect of our claims.
Besides, in practice many of these semantic restrictions are
bound to be language-specific. The result also forms a useful
catalog of JavaScript restrictions that can be evaluated in
their own right.

This code bloat is, however, by no means limited to
JavaScript: we have also noticed it with Python [23] and (to
a lesser extent) Racket’s Beginning Student Language [10],
and appendices C and D show worked examples of this.
We conjecture that the heavily overloaded and implicit be-
havior of languages like Matlab, R, etc. would also exhibit
similar explosion after desugaring. Thus, we believe this is
a general problem faced by many modern languages that
value concision, in-language reflection, the ascription of ob-
ject properties to many kinds of values, and so on, which is
especially a trend in so-called “scripting” languages [15].
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2.1 A Short Introduction to λS5

To aid in reading our code examples, we provide here an
overview of some of the more surprising aspects of λS5
syntax. Appendix A offers a quick-reference of syntactic
forms, while the original paper [22] is a complete reference.

• Both % and # can legally occur in λS5 identifiers. In fact,
% serves as a common prefix for λS5 internals.

• label and break are used in functions to represent non-
linear control flow. break lbl val jumps to label lbl
with value val.

1 Our interest is not only in size but in code complexity in general. How-
ever, size is both easy to measure and a fairly good proxy for complexity.
Furthermore, it is a dominant variable to a tool-writer trying to fit output on
a screen.

1 let (%context = %strictContext) {
2 %defineGlobalVar(%context, "iden");
3 let (#strict = true) {
4 let (%fobj4 = {
5 let (%prototype2 =
6 {[...]
7 "constructor" : {#value (undefined),...}}) {
8 let (%parent = %context) {
9 let (%thisfunc3 =

10 {[#proto: %FunctionProto,
11 #code:
12 func(%this, %args) {
13 %args[delete "%new"];
14 label %ret: {
15 let (%this = %resolveThis(#strict, %this)) {
16 let (%context = {let (%x1 = %args["0",null])
17 {[#proto: %parent,
18 #class: "Object",
19 #extensible: true,]
20 "arguments": {#value (%args), ...},
21 "x": {#getter func (this, args) {
22 label %ret: {
23 break %ret %x1}},
24 #setter func (this, args) {
25 label %ret: {
26 break %ret %x1 := args["0",...]}}}}}){
27 break %ret %context["x",...];
28 undefined}}}},
29 #class: "Function",
30 #extensible: true,]
31 "prototype" : {#value (%prototype2), ...},
32 "length" : {#value (1.), ...},
33 "caller" : {#getter %ThrowTypeError,
34 #setter %ThrowTypeError},
35 "arguments" : {#getter %ThrowTypeError ,
36 #setter %ThrowTypeError}}) {
37 %prototype2["constructor" = %thisfunc3, null];
38 %thisfunc3}}}})
39 %context["iden" = %fobj4 ,
40 {[#proto: null, #class: "Object", #extensible: true,]
41 "0" : {#value (%fobj4), #writable true, #configurable true}}]}}

Figure 1. The desugaring of function iden(x){return x;}

• Like JavaScript, λS5 uses an explicit context object, repre-
sented by the identifier %context, to map identifier names
to their values. For instance, a reference to a JavaScript
variable x desugars to a field access on the context object
%context["x", ...].

• In JavaScript, object fields are called properties, and both
objects and properties have attributes. This is reflected in
λS5 objects. Take this sample λS5 object literal:

{[#proto : %ObjectProto,
#class : "Function",

#code : func(this, args){ undefined },]

"length" : {#value 0, #writable true} }

The object’s attributes are listed between square brack-
ets: #proto gives the object’s internal prototype, #class
gives its class name as a string, and #code gives the
function body for objects derived from function defini-
tions. This object also has a "length" property, whose
attributes are written between braces: #value gives its
current value, and #writable says whether the property
can be mutated. There are other attributes as well: of note,
rather than a #value, a property may have #getter and
#setter functions that are called when it is accessed or
mutated.
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• Accessing a property is written as object["prop"],
while setting one is written object["prop"= expr].2

Terminology The term “desugaring” with respect to λS5
is somewhat misleading, since its core language is not a
strict subset of JavaScript.3 However, the translation from
JavaScript to λS5 is a context-insensitive recursive-descent
process, and performs no aggressive transformations like
many compilers do; it is thus sufficiently suggestive of tradi-
tional desugaring that we choose to call it “desugaring”.

We will use one other piece of terminology. λS5 is shipped
with an environment that implements built-in JavaScript
functions in λS5. Fully desugaring a JavaScript program,
then, consists of performing recursive-decent desugaring
over the program, and then prefixing the desugared program
with the environment definitions. We call the recursively
desugared program user code, thus distinguishing between
user code and environment code.

2.2 Incidental Complexity
Consider the code in fig. 1, which shows a desugared identity
function. The desugaring follows the algorithm defined in
the specification: it first creates an object literal as the proto-
type (line 5), and then creates a function object literal which
has many built-in properties. Finally, the code assigns the
function object to the "iden" property of the context object
%context (line 39).

It is not difficult to see that the main component of the
function body is a new context object. This context object is
created specially for dealing with scopes inside the function.
It has the previous context object as its prototype; this is
primarily used for looking up non-local variables through
the prototype chain.

Much of this code is unnecessary, however:

• The let-binding introduces an unnecessary %parent iden-
tifier.

• The getter and setter of "x" in the context both have
useless label. . . break expressions.

• The expression after break %ret is not reachable.
• The desugared function object always has four properties

that might never be used.

The cause of this redundant and dead code is simple: the
desugaring is a context-insensitive recursive-descent pro-
cess. This has the advantages of simplicity and predictability,
and the disadvantage of generating unnecessary code.

2.3 Essential Complexity
The main source of complexity in fig. 1, however, is not
the little bits of redundant code generated by desugaring,

2 When these operations are given an extra argument—
object["prop", expr] or object["prop"= expr, expr2]—this
argument is passed to the properties’ getter or setter function, if it has one.
3 We credit Arjun Guha for creating this confusion.

but rather the underlying semantics of JavaScript. Pieces of
the JavaScript code cannot be represented in straightforward
ways in λS5, because λS5 has to guard against all the strange
features of JavaScript. For instance:

1. The iden JavaScript function cannot be represented as
a λS5 function, because JavaScript functions double as
objects and object constructors, and it is possible that
iden will be used as a constructor: new iden(). If this
were not the case—if we assume that iden will only
be used as a function—then the code in fig. 1 can be
simplified to:
let (%context = %strictContext) {
%defineGlobalVar(%context, "iden");
let (#strict = true) {

let (%fobj4 = {
let (%parent = %context)

func(%this, %args) {
%args[delete "%new"];
label %ret: {
let (%this = %resolveThis(#strict, %this)) {
let (%context = {let (%x1 = %args["0", null])

{[#proto: %parent,
#class: "Object",
#extensible: true,]
"arguments" : {#value (%args) ,

#writable true ,
#configurable false},

"x" : {#getter func(this, args) {
label %ret: {
break %ret %x1}},

#setter func(this, args) {
label %ret: {
break %ret %x1 := args["0",...]}}}}})

{break %ret %context["x", {[#proto: null,
#class: "Object",
#extensible: true,]}];

undefined}}}}})
%context["iden" = %fobj4 ,

{[#proto: null, #class: "Object", #extensible: true,]
"0" : {#value (%fobj4), #writable true, #configurable true}}]}}

2. Furthermore, the JavaScript identifier iden cannot be
represented as a λS5 identifier because of JavaScript’s
complicated scoping. For instance, it is possible to dy-
namically look up the identifier on the global object:
this["iden"]. However, if we further assume that no
scope shenanigans are used, then iden can be repre-
sented as a λS5 identifier, and the code can be further
simplified to:

let (%context = %strictContext) {

let(iden = undefined) {

let (#strict = true) {

let(%fobj4 = {

let (%parent = %context)
func(%this, %args) {

%args[delete "%new"];

label %ret : {

let (%this = %resolveThis(#strict, %this)) {

let (%x1 = %args["0", null]) {

break %ret %x1;
undefined}}}}})

iden := %fobj4}}}

3. Finally, JavaScript allows functions to be passed either
more or fewer arguments then they were declared to
take. Missing arguments are bound to undefined, and
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extra arguments can be accessed through an array called
arguments. As a result, JavaScript function applications
cannot be converted directly to λS5 applications. Rather,
the λS5 code must explicitly construct the arguments

object. If we instead assume that functions will be called
with however many arguments they were declared to
take, the code can be shrunk further, to produce:
let (%context = %strictContext) {

let (iden = undefined) {

let (#strict = true) {

let (%fobj4 = {

let (%parent = %context)
func(%this, %x1) {

label %ret: {

let (%this = %resolveThis(#strict, %this)) {

break %ret %x1;
undefined}}}})

iden := %fobj4}}}

This example demonstrates how a great deal of complexity
arises from the semantics of JavaScript, and how making
simplifying assumptions about how the language is used can
greatly shrink desugared output.

In section 5, we will further shrink the definition of iden
to the following simple expression:
let (iden = func(%this, %x1) {%x1})

2.4 Inevitable Complexity
There is actually a third source of complexity: our choice
of using a small core language. Readers can conceivably
imagine the complexity added to the output by desugaring a
while loop written in a highly expressive surface language
to a recursive function definition in a small core language.

Choosing different core languages will inevitably add
different levels of complexities to the desugaring output.
This paper is not going to compare the impact of choosing
different core languages.

3. Roadmap
Now we are ready to tackle the problem of shrinking the
output of desugaring. The preceding examples make clear
there are potentially two kinds of transformations we can
apply. The first are semantics-preserving, such as dead-code
elimination. Most of these are generic, but some are specific
to patterns that arise in this particular language. More in-
triguing, however, are the ones that cannot be applied in all
settings, because doing so would alter the meaning of the
program.

The heart of this paper is a case study of these semantics-
altering transformations. These are described in section 4.
However, to perform any experimental analysis, we can-
not rely simply on these. Even if we found savings, it
could be that the same effect could have been achieved
just by generic—or at least language-specific—semantics-
preserving transformations. Therefore, we have also imple-
mented a suite of those (section 5). In our experimental eval-

uation (section 6), we then contrast the effect each of these
has, and also the impact of combining them.

There is one decision we have to make to implement the
above transformations. We can either modify the existing
desugarer directly, or we can introduce separate transforma-
tion phases that process the output of desugaring. Take the
previous unnecessary undefined: we can choose to make
the desugarer smarter—to not produce the undefined if the
function has a return statement—or to leave the desugarer
alone and purge it after desugaring.

We haven chosen the latter path, leaving the desugarer
alone. First, this simplifies development: some of the trans-
formations are not trivial, and encoding them into the desug-
arer would make that step much more complex, making it
harder to debug when we make mistakes. Second, the desug-
arer might change as we discover more corners of the lan-
guage; these changes are harder as the desugaring becomes
more complex. Third, it more easily enables experimenta-
tion, because we can easily mix-and-match different rules
(as we do in section 6). However, we do not consider any of
these reasons canonical; there would be advantages to mod-
ifying the desugarer too (for instance, some information is
currently lost, such as which functions are used as object
constructors: this information is present at every new). Sim-
ilarly, one could sidestep the problem entirely by employ-
ing more declarative rewriting systems designed for program
transformation. Most of all, we do not believe it has a notice-
able impact on the findings in this paper.

Workflow Each semantics-altering transformation has a
crisp definition. We leave open how a user selects which
transformations they want. In our current toolchain these are
specified as command-line options. For example, users can
use -ir -fr to apply Identifier Restoration and then Func-
tion Restoration to the code. Having a concise summary of
which transformations were applied is important, as we dis-
cuss in section 7.

Working Assumption All the transformations in this paper
make two assumptions. First, that the code is in strict mode;
that is all λS5 claims to model faithfully anyway. Second,
that the code does not use eval or its equivalents; its pres-
ence would invalidate most of these transformations. In that
regard, then, all the transformations here could be considered
semantics-altering with respect to general JavaScript, but we
find this an uninteresting classification. Most static analyses
already assume the absence of eval, and richer analyses ex-
pect strict mode or its rough equivalent to ensure reasonable
programs. Therefore, we consider this a reasonable precon-
dition to impose.

4. Semantics-Altering Transformations
In this section we describe semantics-altering transforma-
tions. They purposefully simplify the semantics of JavaScript
by weakening particular language features. They are useful
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both for the practical purpose of making λS5 code more
manageable, and for the expository purpose of showcasing
the costs of various JavaScript features (as explored in sec-
tion 6.4).

We present these transformations in a catalog. Each entry
has four parts:

Example of code before and after the transformation,

Justification of why this is a useful and reasonable simpli-
fication to make,

Pitfalls showcasing situations in which the transformation
can change the meaning of the program, and

Preconditions under which these pitfalls are avoided and
the transformation becomes semantics preserving.

♦ Fixing Function Arity (FA)
JavaScript supports variable arity functions by constructing
an array of arguments at the call site called the argument
object. Functions can index into this array to refer to each
argument. Because desugaring explicates this, even calls that
do not exploit this feature become much more complex in
desugared output. In particular, this complicates any analysis
that needs to distinguish parameters—such as a type system
or flow analysis—because the parameters get lumped into
a single object, and must be tracked through that object by
the analysis. Therefore, this transformation simply disables
variable-arity calls.

Example Take a simplified version of the iden function in
fig. 1:

func(%this, %args) {

let (%x1 = %args["0",null])
...

}

This transformation fixes the arity of iden by giving it a new
function signature to match the declared arity in JavaScript:

func(%this, %x1) {

...

}

The transformation must transform call sites as well. Instead
of constructing an argument object:

iden(undefined,
%mkArgsObj({[...]

"0" : {#value (%context["a",...])
#writable true,
#configurable true}}))

the argument is passed in directly:

iden(undefined, %context["a",...])

Justification Variable-arity functions in JavaScript are
used both for functions that can take any number of argu-
ments, and to simulate optional arguments (whose default
becomes undefined). They can also be error-prone, since
the programmer is given no warning if they pass the wrong

number of arguments to a function. It makes sense to use
this transformation for code that does not use variable-arity
functions for either of these use-cases.

Pitfalls Naturally, this transformation is not sound if the
number of arguments in the call does not match the parame-
ters of the callee. Concretely, when run under λS5, the result-
ing program will issue an arity mismatch error if the num-
ber of arguments differ, though this is an artifact of the λS5
implementation (which could have chosen to simply ignore
the mismatch and enable arbitrary behavior). However, this
behavior is not disconcerting: a static analysis would pre-
sumably have caught and reported this mismatch in the first
place, so the behavior of the λS5 interpreter is uninterest-
ing. Nevertheless, a program that would have run before with
a mismatched number of arguments will now exhibit some
other behavior.

Preconditions To preserve semantics, this transformation
must be applied only when

• All functions are called with exactly as many parameters
as their headers declare. (Since JavaScript is a higher-
order language, this property is of course not soundly and
completely decidable.)

• The argument keyword is not used.
• Due to the implementation of λS5, this transformation

cannot be applied to getter and setter attributes. Fixing
this would require modifying the λS5 interpreter, which
we purposefully avoid in this work.

♦ Function Restoration (FR)
In JavaScript, functions are objects and can also be used
to create objects. In the latter case, the function is called a
constructor. For example, the expression new Date() uses
the function Date as a constructor to create a new object.
This transformation conservatively restores some λS5 func-
tion objects to λS5 functions. It uses a (good) heuristic: func-
tion objects whose body does not use this can be restored to
functions.

Example The code in fig. 1 presents a function object.
After this transformation, the code contains only the function
body; its object properties are trimmed away:

let (%fobj =

func(%this, %args) {

%args[delete "%new"];

label %ret : {

...context object ...

break %ret %context["x", ...];

undefined
}})

...

Justification If a function is never used as a constructor
or an object, it is unnecessary to keep its compound object
form.
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Pitfalls This transformation hobbles code that tries to ac-
cess properties from the function object (e.g., obtaining the
length of formal parameters). For instance, this code gets the
length of function iden defined in fig. 1:

%context["iden",...]["length", ...]

This code will fail because the property will not be present.
In the λS5 interpreter this issues an error, but again this is
relatively unimportant.

Preconditions The following preconditions should hold
for restored functions (those whose body does not use this):

• There is no property inspection of restored functions in
the code.

• Restored functions are not used as constructors.
• instanceof and typeof are not used on the restored func-

tions.

♦ Simplifying Arithmetic Operations (SAO)
JavaScript’s arithmetic operators have complicated seman-
tics. The addition operator, +, for example, produces sur-
prising results when applied to objects and arrays:

[] + {} // => "[object Object]"

This transformation simplifies the semantics by making
strong assumptions about how operators are used: Additive
and Relational operators must be applied to arguments of
the same type (either Number or String)), and Bitwise Shift
and Multiplicative must be applied to Numbers only.

Example This transformation does not change the user
code. The new semantics of arithmetic operations are im-
plemented as a replacement of the old one. For example, the
JavaScript program a + b desugars to:

%PrimAdd(%context["a",...], %context["b",...])

where %PrimAdd is defined in the environment. This trans-
formation replaces the definition of %PrimAdd and other
arithmetic operators.

Justification The variety of behaviors exhibited by oper-
ators like + can be baffling to newcomers. JavaScript fa-
mously provides an eight-step algorithm [9] to describe the
behavior of +, and by design, this ends up being reflected ex-
plicitly in the semantics. Whether this behavior is presented
directly in desugared output or hidden behind a primitive op-
erator (like %PrimAdd), it must still be handled by tools that
process the language. Indeed, it makes the first introduction
to λS5 particularly daunting, because 1 + 2 is the kind of
example a user thinks to try first.

Pitfalls Some programs really do exploit the full range of
behaviors of +. For instance, programmers sometimes use it
to convert integers to strings, since adding a number to an
empty string converts the number to a string.

To the author of a tool, this presents a choice. If they
are unwilling to make assumptions about their source pro-
grams, they can still use this transformation to initially sim-
plify the semantics that they work with. This provides a more
tractable debugging target. Having developed the core of
their system, they can enlarge the semantics by removing
this assumption, admitting the full range of JavaScript be-
haviors.

Preconditions To preserve semantics, this transformation
must be applied on the condition that

• Additive and Relational operators are applied to operands
of the same type, specifically either Number or String;
and

• Bitwise Shift and Multiplication are only applied to
Numbers.

♦ Identifier Restoration (IR)
JavaScript has a complicated scoping semantics that pre-
vents JavaScript identifiers from being represented as λS5
identifiers. (λS5 is lexically scoped.) For instance, identifiers
can be dynamically accessed through the context object this:

var n0 = 2;
print(this["n" + 0]); // 2

To handle complications like these, a JavaScript identifier n0
desugars into a property on a context object %context["n0"].
Variable declarations are performed using the helper func-
tion %defineGlobalVar(%context, "n0"), and assignments
use %EnvCheckAssign(%context, "n0", 2, true). How-
ever, if the JavaScript context object is not used to interfere
with variables’ scoping, then they can be safely represented
as λS5 identifiers.

Example See fig. 2.

Justification The benefits of lexical scope are well-known:
in short, it allows you to tell where an identifier is bound only
by looking at the code surrounding it (above it in the AST,
more or less). JavaScript scope is nearly lexical. Two things
that stand in its way are the with statement (that introduces
dynamic scope), and manipulation of the context object.
JavaScript’s strict mode removes the with statement (making
it an error to use). Thus simply assuming the scope object is
not used in certain ways makes JavaScript scope lexical, and
allows its identifiers to be represented as λS5 identifiers.

This transformation is particularly useful because it opens
the door for semantics-preserving transformations. It enables
constant and non-constant propagation, which in turn allow
other optimizations to take effect. It also increases readabil-
ity: identifiers are the parts of our code we choose to name,
and most code makes heavy use of identifiers. Thus, it tends
to be easier to tell what desugaring has done to your code
when your identifiers have been left intact.

Pitfalls
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JavaScript λS5 Restored λS5

var x;
x = 1;

this.x = 1;

x;

%defineGlobalVar(%context, "x");

%EnvCheckAssign(%context, "x", 1, true);}
try {

%set-property(%ToObject(%this), "x", 1.)

} catch {

%ErrorDispatch
};

%context["x"]

let (x = undefined) {

x := 1;

try {

x := 1

} catch {

%ErrorDispatch
};

x}

Figure 2. Identifier Restoration (IR) example

1. After this transformation, variables will no longer magi-
cally be accessible on the context object, so looking them
up will instead return undefined. For example, the follow-
ing code:
var k = 1;
access(this);

is desugared and then transformed to:
let (k = undefined) {

k := 1;

...

access(undefined, %this)
...

}

If calling access(obj) prints the property "k" of obj,
this will cause access(this) to print undefined, instead
of 1, as this["k"] is unbound and defaults to undefined.

2. In JavaScript, deleting a variable that was previously
declared will throw an TypeError. For example,
var k = 1;
delete this.k; // throw JavaScript TypeError

The above code desugars to:
%defineGlobalVar(%context, "k");

%EnvCheckAssign(%context, "k", 1., true);
...

%this[delete "k"]; // TypeError. ”k” is nonconfigurable.
...

After this transformation is applied, delete no longer
throws TypeError, and instead returns a boolean value
for an unbound property:
let (k = undefined) {

k := 1;

%this[delete "k"]; // No TypeError
}

Preconditions To preserve the semantics, the code must
not:

• Delete properties of the context object,
• Enumerate the context object’s properties, or
• Access properties of the context object by computing

names.4

4 A static access this.k will, however, be restored to k when k is in scope.

♦ Unsafe Assertion Elimination (UAE)
The JavaScript specification is littered with implicit type
conversions and type checks. These are reified in λS5, and re-
sult in a lot of generated code. This transformation removes
them under the assumption that the code being run is already
correct and never fails these checks.

Example For example, a simple function application:

iden(x);

desugars to

let (%fun6 = %context["iden", ...]) {

let (%ftype7 = prim("typeof", %fun6)) {

if (prim("!", prim("stx=", %ftype7, "function"))) {

%TypeError("Not a function")

} else {

%fun6(undefined,
%mkArgsObj({[..]

"0" : {#value %context["x", ...],

...}}))}}}

By removing the assertion that iden refers to a function, the
code becomes:

let (%fun6 = %context["iden", ...]) {

let (%ftype7 = prim("typeof", %fun6)) {

%fun6(undefined,
%mkArgsObj({[..]

"0" : {#value %context["x", ...],

...}}))}}

(The binding to %ftype7 then becomes unused and can be
removed by Dead Code Elimination.)

Justification This transformation eliminates clutter that
generally goes unused in correct programs.

Pitfalls This transformation obviously violates the lan-
guage’s semantics. If a program contains an error, it will
now raise an internal λS5 exception rather than the correct
JavaScript exception. More subtly, code that might have
relied on these type tests—such as a flow-sensitive type
checker [14]—will clearly behave differently.

Well-behaved code should, however, generally not trigger
built-in JavaScript exceptions. For instance, if a value ought
to be a function but is not, the correct time to notice is some
time before applying it. Correct JavaScript code that obeys
this principle will be unaffected by this change; code that
does not obey it will still throw an exception, though it will
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be an internal λS5 exception rather than the more correct
JavaScript exception.

Preconditions The code must not fail any runtime type
checks.

5. Semantics-Preserving Transformations
In this section we list our semantics-preserving transforma-
tions. These are (primarily) traditional optimizations that
could be applied to most languages, and in this case are used
to optimize λS5 code. Most readers could get the gist of these
transformations by simply skimming over their names. We
have not performed flow analysis over the whole program:
this would generate more opportunities for code compres-
sion, but would likely have little impact on the semantics-
altering optimizations that are the focus of this paper.

We demonstrate the use of the semantics-preserving
transformations by showing in steps how they can greatly
simplify a piece of desugared code. This section will shrink
it bit-by-bit, eventually reaching the denouement promised
in section 2.3 of restoring a desugared identity function to a
comparable form. We start with the following code:

"use strict";
function iden(x) {return x;}
var a = 1, b = 2, sum;
sum = a + b;
iden(sum);

After desugaring, as well as a few simplifications from
semantics-altering transformations,5 this code becomes:

let (%context = %strictContext) {

let (sum = undefined)
let (b = undefined) {

let (a = undefined) {

let (#strict = true) {

"use strict";

{let (%fobj9 ={let (%parent = %context)
func(%this, %x6) {

label %ret: {

{{let (%this = %resolveThis(#strict, %this)){
break %ret %x6;
undefined}}}}}})

iden := %fobj9};
a := 1.;

b := 2.;

undefined;
sum := %PrimAdd(a, b);
let (%fun2 = iden) {

let (%ftype3 = prim("typeof", %fun2))
if (prim("!", prim("stx=", %ftype3, "function"))) {

%TypeError("Not a function")

} else {

%fun2(undefined, sum)}}}}}}

We will show how the semantics-preserving transforma-
tions can simplify it.

5 Specifically, we apply IR, FR, and FA: these were chosen so the remaining
code best illustrates our semantics-preserving transformations

♦ Assignment Conversion
The Identifier Restoration transformation produces identi-
fiers and assignments, but other transformations are still
unable to directly benefit from assignments. This transfor-
mation replaces many λS5 assignments with let bindings,
which have a simpler semantics that more transformations
can exploit. Take our example: this phase can transform all
the assignments while preserving the semantics.
let (%context = %strictContext)
...omitted...
let (#strict = true){
"use strict";

let(iden ={let (%parent = %context)
func(%this, %x6) {

label %ret: {

{let (%this = %resolveThis(#strict, %this)){
break %ret %x6;
undefined}}}}}) {

let (a = 1.) {

let (b = 2.) {

undefined;
let (sum = %PrimAdd(a, b)){
let (%fun2 = iden) {

let (%ftype3 = prim("typeof", %fun2))
if (prim("!", prim("stx=", %ftype3, "function"))) {

%TypeError("Not a function")

} else {

%fun2(undefined, sum)}}}}}}}

♦ Constant Propagation
If an identifier is let-bound to a constant, it can be propagated
to its use sites. The previous transformation exposes such let
bindings. By propagating them, the code becomes:
let (%context = %strictContext)
...omitted...
let (#strict = true){
"use strict";

let(iden ={let (%parent = %context)
func(%this, %x6) {

label %ret: {

{let (%this = %resolveThis(true, %this)){
break %ret %x6;
undefined}}}}}) {

let (a = 1.) {

let (b = 2.) {

undefined;
let (sum = %PrimAdd(1, 2)){

let (%fun2 = iden) {

let (%ftype3 = prim("typeof", %fun2))
if (prim("!", prim("stx=", %ftype3, "function"))) {

%TypeError("Not a function")

} else {

%fun2(undefined, sum)}}}}}}}

A binding is considered constant if its identifier does
not undergo variable mutation, its evaluation has no side-
effects, and its value is not mutable. JavaScript object literals
are rarely constant, because by default they allow both old
properties to be changed and new properties to be added.
They can be made constant by calling the built-in freeze

method after initialization:
var o = {"x" : 1, "y" : 2};
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o.freeze();
foo(o);

However, since constant objects are rare to begin with, and
propagating an object that is used more than once has the
potential to increase code size, we only propagate objects
that are used exactly once. Similarly, since propagating a
function that is used more than once would almost certainly
increase code size, we only propagate functions that are
used exactly once. In both of these cases, propagation is
actually done in the more general Non-constant Propagation
transformation.

♦ Constant Folding
This transformation simplifies constant expressions: when
it sees a side-effect-free primitive operation or a known
built-in function whose arguments are constants, such as the
%PrimAdd function call in the this example, it applies the
primitive or function. The previous program thus transforms
to:
let (%context = %strictContext)
...omitted...
let (#strict = true){
"use strict";

let(iden ={let (%parent = %context)
func(%this, %x6) {

label %ret: {

{let (%this = %resolveThis(true, %this)){
break %ret %x6;
undefined}}}}}) {

let (a = 1.) {

let (b = 2.) {

undefined;
let (sum = 3.){

let (%fun2 = iden) {

...omitted...
%fun2(undefined, sum)}}}}}}

Constant folding potentially produces more constants (e.g
sum in this example) for propagating. Applying Constant
Propagation again replaces the use of sum with 3.

♦ Dead Code Elimination
This transformation removes unreachable code, such as the
undefined, and the needless label. . . break patterns. It
also removes other useless code, such as the lets and ex-
pressions that have no side effect in our running example.
Thus, we obtain:
let (iden = func(%this, %x6) {%x6}) {

let (%fun2 = iden) {

let (%ftype3 = prim("typeof", %fun2))
if (prim("!", prim("stx=", %ftype3, "function"))) {

%TypeError("Not a function")

} else {

%fun2(undefined, 3.)}}}

♦ Non-constant Propagation
Desugaring often introduces let-bindings to avoid duplicate
evaluation, though they’re not always strictly necessary. For
example, in the previous transformed code, %fun2 is just

used as an alias of iden and %ftype3 is used only once as
a temporary variable. This transformation propagates and
eliminates them, producing:

let (iden = func(%this, %x6) {%x6})
if (prim("!", prim("stx=", prim("typeof", iden),

"function"))) {

%TypeError("Not a function")

} else {

iden(undefined, 3.)}

In general, this transformation must take care to avoid possi-
bly re-arranging the order of side-effects. It propagates non-
constant functions and objects that are used exactly once,
alpha-renaming captured variables if necessary.

As another example, unnecessary let bindings similarly
occurs in fig. 1. The %context and %parent bindings are
both unnecessary. These values can be propagated without
altering the semantics of the program.

♦ Assertion Elimination
This is a variant of Unsafe Assertion Elimination (section 4)
that only removes the type conversions and type checks
that are demonstrably redundant. For example, the previous
code checks iden’s type before applying the function. This
is unnecessary as iden’s type is already determinate from the
source. This code can be simplified to:

let (iden = func(%this, %x6) {%x6})
if (prim("!", prim("stx=", "function", "function"))) {

%TypeError("Not a function")

} else {

iden(undefined, 3.)}

Constant Folding can then clean the if branch and shrink
the code to:

let (iden = func(%this, %x6) {%x6})
iden(undefined, 3.)

♦ Function Inlining
Function inlining replaces a λS5 function application with
the function’s body, substituting the actual parameters for
the formal ones. Given the ability of Non-constant/Constant
Propagation to propagate functions that are used exactly
once, this transformation only inlines functions that have
been propagated to a call site. Therefore, an inlinable func-
tion is allowed to contain free variables but must not contain
assignments to its formal parameters. To prevent potential
bloat, the actual arguments at the call site must be either
constant primitive values or identifiers. The running exam-
ple can thus be shrunk in the following steps:

let (iden = func(%this, %x6) {%x6})
iden(undefined, 3.)

iden must first be propagated to the call site, yielding

let (iden = func(%this, %x6) {%x6})
(func(%this, %x6) {%x6})(undefined, 3.)

Then this transformation inlines the function, producing
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let (iden = func(%this, %x6) {%x6})
3

A pass of Dead Code Elimination gives the expression 3.
Function Inlining is less useful than it would otherwise

appear because JavaScript functions double as objects and
thus cannot be represented as λS5 functions and cannot be
inlined. iden in the running example is inlinable mainly due
to the Function Restoration transformation.

♦ Environment Cleaning
This transformation eliminates the definitions of unused
built-in functions. In this way it is similar to Dead Code
Elimination. It has the benefit, however, of some extra in-
formation. In the environment, most of the global, built-in
functions are injected into the global context object by direct
assignment to the %global object. For example:
%global["print" = %print];
%global["console" = %console];

Dead Code Elimination is unable to remove assignments
like these, because objects in JavaScript may have “setter”
functions that are triggered when an object’s properties are
modified, and these setters may have side-effects. However,
the environment never puts setters or getters on these global
variables, and user code lacks direct access to them. Thus
if a built-in object like console is unused or is redefined
in user code, the previous injection of %console and all of
console’s properties are safely eliminated by this phase.

This transformation is technically semantics-altering: it
might eliminate references to built-in objects if all references
to them are computed. Unlike the other semantic-altering
transformations, however, it does not correspond to a sim-
plification of JavaScript semantics; therefore we choose to
put it in this category.

6. Evaluation
Having described our transformations in detail, we now ex-
amine their effectiveness.

6.1 Semantics-Preserving Transformations
Our semantics-preserving transformations are based on
well-understood techniques, and we have carefully checked
them by hand. Because we are beginning with a tested se-
mantics, however, we can use the same ECMAScript test
suite [8] to experimentally ensure we haven’t altered cor-
rectness. Because we assume that programs do not use eval
and related dynamic code-generation operations, however,
we filter out the tests that use these features. The remaining
tests constitute our baseline.

The test suite is grouped into the chapters of the EC-
MAScript spec. The first six chapters set the context for the
spec, so they are not testable. Each chapter contains tests
for both strict-mode and non-strict-mode semantics except
for chapter 9, which only contains tests for non-strict mode.
Figure 3 shows the testing results. These transformations are

Chapter Passed Baseline Percent Passed
ch07-strict 19 19 100%
ch08-strict 11 11 100%
ch09-strict 0 0 N/A
ch10-strict 130 130 100%
ch11-strict 82 82 100%
ch12-strict 7 7 100%
ch13-strict 52 52 100%
ch14-strict 5 5 100%
ch15-strict 16 16 100%
ch07-nonstrict 471 471 100%
ch08-nonstrict 140 140 100%
ch09-nonstrict 108 108 100%
ch10-nonstrict 87 87 100%
ch11-nonstrict 1024 1024 100%
ch12-nonstrict 377 377 100%
ch13-nonstrict 98 98 100%
ch14-nonstrict 20 20 100%
ch15-nonstrict 4677 4677 100%

Figure 3. Test results for the semantics-preserving transfor-
mations

applied in an order that, our experiments find, maximizes
shrinkage. Figure 3 shows that even after applying all these
transformations, the semantics continues to conform to the
tests. Because the number of strict mode tests is small, we
also consider non-strict tests. As the figure shows this re-
sults in substantially more tests, which gives us much more
confidence in the implementation of our transformations.

6.2 Semantics-Altering Transformations
For semantics-altering transformations, the number of passed
tests drops, which is not surprising. We focus instead on the
trade-off between code size and correctness (as measured by
the percentage of baseline tests passed): one would expect
that the more code we excise, the less correct the resulting
program becomes.

Figure 4 presents this information for each individual
semantics-altering transformation and for ordered combina-
tions of them. It shows only some combinations because
these transformations are largely independent of each other
and other orderings do not have substantially different im-
pact. As expected, the more transformations we apply, the
more we shrink code while trading correctness. Of course,
the expectation is that these are applied either for debugging
purposes or because we can make an environmental assump-
tion about code that enables these optimizations.

Figure 4 also shows the correctness of our semantics-
altering transformations. This confirms that our transforma-
tions are not too aggressive: even applying all of them results
in code that passes over 70% of tests.
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Figure 4. User code shrinkage vs. correctness of semantics-
altering transformations

6.3 True Code Shrinkage
We have just examined the code shrinkage obtained by
semantics-altering transformations, and seen that signifi-
cant shrinkage can be obtained in exchange for reasonable
amounts of “correctness”. But perhaps the code bloat that
was removed was actually incidental, rather than seman-
tic, in nature and could have been removed by semantics-
preserving transformations alone. We will now show that
this is not the case by comparing the shrinkages of the
semantics-preserving and semantics-altering transforma-
tions on the JavaScript test suite.

Recall the distinction between the environment and the
user code. The environment is the λS5 “standard library”,
which defines the meaning of primitives such as the addition
operator; it is itself written in λS5, and hence amenable to
transformation. User code is the program of interest. User
code shrinkage is more relevant than environment shrinkage
since it is the part that reflects the original JavaScript pro-
gram, scales with its size, and is also usually the part that
tools will wrestle with directly.

Measuring shrinkage of just the tests in the test suite may
not be very meaningful, because it may reflect artifacts of
the test suite. (The tests range in size between 6 and 78,122
AST nodes.) We have therefore assembled a collection of
8 widely-used JavaScript libraries (such as Three.js, D3.js,
and Underscore.js), ranging in size from 23,313 to 802,459
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Figure 5. Environment code and user code shrinkage, per
strategy

nodes. In addition to being much larger, these are also reflec-
tive of real-world JavaScript.6

When both semantics-altering and semantics-preserving
transformations are run together, the semantics-altering ones
are run first. This is because they are essentially modifica-
tions of desugaring (as discussed in section 3), and must
thus logically follow desugaring and precede the semantics-
preserving transformations. We also expect the semantics-
altering transformations to create new opportunities for
semantics-preserving transformations to apply (as witnessed
in section 5).

Figure 5 shows the shrinkage of applying both transfor-
mations to the test suite and the set of libraries. For each of
the tests and libraries, the shrinkage is measured per test or
per library; we present the average of these. We will briefly
explain some of the causes of the patterns, and then interpret
the data.

Preserving The semantics-preserving transformations have
a large impact on environment code: this is mostly due to
Environment Cleaning, which removes unused functions
from the environment. (Which environment functions can
be removed depends on user code, which is why the
test suite and library environment shrinkage differ.) The
more important user-code shrinkage is more moderate,
however.

Altering The semantics-altering transformations together
dramatically reduce user code size, on the order of 50%.
The effect on the environment is minimal; they do not
aim to shrink it.

6 We cannot, however, use the libraries to check transformation correctness:
the lack of comprehensive non-strict semantics, their use of eval, and the
inability of λS5 to interact with the DOM all make this a non-starter.
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Figure 6. Environment code and user code shrinkage, per
transformation, for semantics-altering transformations

Altering; Preserving The combined effect of semantics
preserving and altering transformations is very close to
the sum of them individually.

These data can be interpreted to indirectly compare the
incidental complexity of desugared JavaScript code with
the more inherent essential complexity. The incidental com-
plexity is the “preserving” shrinkage: it is how much extra
λS5 code is generated, primarily as a byproduct of straight-
forward compositional desugaring. The essential complex-
ity, on the other hand, is best taken as the difference be-
tween “preserving” shrinkage and “altering then preserv-
ing” shrinkage: the former is the essential complexity before
semantics-altering transformation, while the latter is the es-
sential complexity after transformation. The figure shows
that the “preserving” shrinkage for user code is on the order
of 10%, while the “altering then preserving” shrinkage is
much higher, on the order of 50%. This supports the follow-
ing observation:

Observation 1. Most code bloat in λS5 is semantic in nature.

6.4 Comparing JavaScript Features
In fig. 6, we compare the code shrinkage of the various
semantics-altering transformations. Since these transforma-
tions largely consist of weakening JavaScript features, this
gives us a way to (indirectly) compare the complexity of the

features. The reader can draw their own conclusions, but two
things stand out:7

Observation 2. By far the largest source of complexity is
JavaScript’s (unique brand of) dynamic scope.

Observation 3. The smallest source of complexity among
those we tested is (perhaps surprisingly) the automatic type
checks that JavaScript does.

Of course, these observations are dependent on λS5’s
implementation of desugaring: in particular, a feature that
desugars into much more code than necessary would appear
more complex than it is.

7. Discussion
Semantic Bloat As our examples show, the essential com-
plexity of JavaScript is considerable. Naturally, not every
program and programmer does, or should, exploit all of
its complex behavior. A book like JavaScript: The Good
Parts [7] effectively recommends programming in a temper-
ate sub-language of JavaScript, and it is not alone: various
type systems and static analysis tools effectively enforce lin-
guistic shrinkage, as do myriad blog posts and other pro-
grammer advice. In the most extreme case, so does the EC-
MAScript standardization committee, through the creation
of “strict mode” [9, section 4.2.2] and the consideration of
new proposals such as “strong mode” [12].

Our experiments aid in this process. For one thing, they
effectively (crudely) quantify the overhead imposed by the
unfettered version of a language feature. Similarly, they help
point to features that may be doing too much, and suggest
ways in which these features might be restricted. Of course,
these numbers are relative to a particular choice of core
language, and a different core and choice of desugaring
decisions would yield different results. Therefore, there must
always be a strong element of human judgment involved in
these considerations.

Language Modalities It is tempting to ignore semantic
bloat in the following sense: why does it matter if a feature
has more behavior than a program uses? For instance, con-
sider property lookup in JavaScript: the “property” is usually
a number or string, but it can be any arbitrary object; if it is
an object, JavaScript invokes its toString method and uses
that as the index. Most programmers simply never notice this
(indeed, informal polls suggest many are not even aware of
it), but what harm does it do?

For a well-behaved program, this is indeed unproblem-
atic. In a buggy program, it can at least lead to results that
are difficult to understand. But in a security context this
is especially dangerous, because a malicious user can con-
struct a payload that exploits this behavior that the program-

7 It may be surprising that SAO does not shrink user code: this is because
arithmetic operations are defined in the λS5 environment, rather than being
inlined. Ironically, this paper was originally motivated by the need for this
optimization in a tested semantics where they were inlined.
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mer did not anticipate. This has led to real-world security
exploits [19] (for instance, if a program is trying to pre-
vent access to a network communication operator—to avoid
data exfiltration—the attacker can construct an object whose
toString method evaluates to the name of that operator,
thereby circumventing checks). For this reason, program
analyses—especially those that apply to secure settings—
must explore the entire space of language behavior; in turn,
combined with the cost of precision, this can also lead to
many false alarms.

In short, this is a setting where the two sides in the
security-versus-convenience tradeoff take on very different
weights. It also suggests that context is critical, and the ex-
pectations while “scripting” may be very different than those
when “programming”. Ideally, therefore, the programmer
needs a means to express which form of language they want.
The idea of providing a family of related languages has been
explored before, first for PL/C [5] and more recently by the
teaching languages in Racket [4]. The Racket mechanism
(#lang) is, however, more general than teaching, and should
be applicable here.

Indeed, one can view the JavaScript directive that invokes
strict mode—"use strict"; at the top of a function—as a
very limited form of #lang. However, perhaps programming
languages should have the opposite defaults: not opt into the
sub-language but rather opt-out (i.e., operate in a strict mode
unless programmers write "use script"; when they want
the full set of implicit and overloaded behaviors). This raises
several interesting questions: interoperation between multi-
ple, related languages, which is a form of multi-lingual pro-
gramming [20]; the semantics of having individual functions
(or even smaller units of code), rather than whole modules
(as in #lang) be in different languages; and ways to ame-
liorate the verbosity of having to explicitly ask for the mode
that was supposed to make programs more concise. We be-
lieve these are all interesting questions for future work.

Well-Defined Sub-Languages Lacking a #lang-like mech-
anism for JavaScript,8 we have chosen to use command-line
flags (section 3). Either way, this leads to a crisp definition of
the sub-language in use. Besides its utility to tool developers,
this is also vital to research evaluation. In practice, many (re-
search) tools—especially static analyses—process only sub-
languages, but the exact sub-language is left ill-specified or
not specified at all. This greatly complicates processes like
artifact evaluation [16]. Our approach makes clear exactly
what language is being processed. This information should
be published along with any evaluation results. Then, others
can perform a more fair comparison: for instance, perhaps
other results are less impressive but this can be attributed
to their processing a much bigger sub-language. Right now,
authors and reviewers often lack the information to make
such comparisons.

8 Though we note that in the context of the Web, the script type= tag
and attribute can serve this purpose.

8. Related Work
There is a large class of semi-automatic optimizations that
aim for complete correctness, but whose correctness might
be compromised by user mistake. For instance, Java classes
can be automatically partitioned across network bound-
aries [27], or delay and force placement can be automati-
cally inferred when adding laziness points to a language [6],
but both of these approaches can cause bugs given bad input
from the user. This differs from our work both in that our
tool requires no user input to determine how to apply opti-
mizations (beyond which to apply), and that these tools aim
for correctness whereas we do not.

There is also work in trading accuracy away for effi-
ciency. For instance, in EnerJ [25], Java users can declare
certain numerical computations to be inaccurate: these com-
putations would then be run on hardware that performs ap-
proximate floating point arithmetic that loses some accuracy
in exchange for vastly decreasing energy consumption. Re-
cent work by Westbrook et. al. [28] examines optimizations
that trade numeric accuracy away for runtime speed. Further,
they show how to formally reason about the error bounds
of these optimizations. Unfortunately, their work on error
bounds does not apply to us, since rather than dealing with
numeric approximations, our loss of correctness is truly se-
mantic in nature and often involves changing control flow.

Work in test case reduction uses similar techniques to
ours for a completely different purpose [24]. The goal here
is to take a test case that witnesses a bug and reduce it to a
smaller program that also witnesses the bug. This aids de-
velopers fixing bug reports, who can now spend their time
dealing directly with a minimal test case. Like us, the goal
here is to shrink code. In that work, there is no attempt what-
soever to preserve the semantics of the program, beyond that
it should still witness the same bug; thus one transformation
that might be made is removing an argument both from a
function and its call sites.

Another (more specialized) area of work that involves
semantics-altering transformations uses them to help per-
form program analysis [29]. The idea is to use transforma-
tions that can arbitrarily change the semantics of the pro-
gram, but are guaranteed to leave the results of some partic-
ular kind of program analysis unchanged. The analysis can
then be used on the transformed programs, helping with us-
ing analysis tools between different languages.

Based on all these and other papers, we have not found
work that directly compares to ours. Specifically, this paper
describes a general framework of semantics-altering trans-
formations, presenting it both as an aid to debugging and
tool development and as a means of restricting the language
to match what program analyses can handle. We also de-
scribe its consequences for experiment comparison and re-
producibility. Most of all, we couch our transformations as
changes to desugaring, and propose this as a particularly
good medium for describing these transformations.
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Figure 8. Testing strategy for λP

A. λS5 Syntax
For a full description of λS5, see the paper [22]. Figure 7
gives a quick reference for the salient parts of the language.

B. Background: Tested Semantics
Languages must trade concision for explicitness: by provid-
ing more “overloading” (in the broad sense, not just the nar-
row notion used for function definition), they allow program-
mers to reduce the number of operations they must remem-
ber and use. In return, a given program phrase may have
many meanings, some of which may even be decided by its
context. This greatly complicates providing a semantic ac-
count of such a language.

The trend towards concision has been epitomized by
scripting languages [15]. In the name of flexibility they pro-
vide extensive overloading, in-language reflection, dynamic
error recovery, etc. As a result, seemingly simple program
fragments can have a very rich set of behaviors. Gary Bern-
hardt’s “Wat” talk [1] presents these behaviors humorously,
but to a semanticist, these behaviors represent a true chal-
lenge. The semantics must cover all these possible behav-
iors to be useful for providing formal guarantees such as
soundness.

The central problem, then, is determining whether all
the behaviors have been captured in a semantics. The lan-
guages under question usually have large natural language
descriptions that may not necessarily cover all (corner)
cases. In many cases, the true definition is a binary that
implements the system. Therefore, over the past few years,
many researchers have worked on what are sometimes called
tested semantics for languages and systems, including for
JavaScript 3 [13], JavaScript 5’s strict mode [22] and both
strict and non-strict mode [3], PHP [11], Python [23], the
browser DOM’s event model [18], TCP/IP [2], and so on.9

All these semantics use external validation, such as test
suites, to confirm that the semantics do actually (substan-
tially) model the behavior of the real-world systems they
mean to represent.

Unfortunately, the resulting semantics can be large and
unwieldy: after all, hundreds of pages of prose can be re-

9 Tested semantics like these were a major focus of the 2014 “Principles in
Practice” workshop [26].

duced only so much (for instance, the JavaScript semantics
of Bodin et. al. [3]—which aims to conform to the speci-
fication, rather than to implementations—stretches to 3000
lines). Therefore, some semantics use the principle of a core
combined with desugaring. The semantics therefore conform
to the schematic shown in fig. 8. Given a language P , we de-
fine a corresponding core language, λP . Desugaring maps all
P terms into ones in λP . We construct an evaluator for λP
(which is often a straightforward exercise). The composition
of desugaring and evaluation gives us a fresh implementation
for P . We then use existing evaluator(s) for P and a suite of
programs (such as implementation test suites, or even pro-
grams found in the wild—such as the examples in the Wat
talk10) to ensure the fidelity of the semantics.

C. Code Bloat in λπ

Semantic bloat also occurs in λπ [23], a tested semantics for
Python. The identity function in Python (similar to previous
λS5 examples) desugars to a λπ program which has 1198
AST nodes:
(CModule
(CApp (CFunc () (none) (CNone) (none)) () (none))
(CSeq
(CApp (CFunc () (none) (CNone) (none)) () (none))
(CLet iden (GlobalId) (CUndefined)
(CSeq
(CSeq
(CAssign
(CId %locals (GlobalId))
(CId %globals (GlobalId)))

(CAssign (CId iden (GlobalId))
(CFunc (x) (none)
(CLet %locals-save (LocalId)
(CId %locals (GlobalId))
(CSeq
(CSeq
(CAssign (CId %locals (GlobalId))
(CFunc () (none)
...omitted...
(none)))

(CLet
return-cleanup
(LocalId)
(CId x (LocalId))
(CSeq
(CAssign
(CId %locals (GlobalId))
(CId %locals-save (LocalId)))

(CReturn
(CId return-cleanup (LocalId))))))

(CAssign
(CId %locals (GlobalId))
(CId %locals-save (LocalId)))))

(none))))))))

In Python, programs can inspect the global/local scope: e.g.,
the built-in function locals in a function body can be used
to access to local variables. This feature is the main source
of the bloat in this example (omitted lines, roughly about
1000 AST nodes). If the code never exploits this feature,
a semantics-altering transformation can eliminate the elided
function, which yields a reasonable code size as follows:

1 (CModule

10 In fact, using these examples helped us unearth a small but subtle bug in
one of our semantics.
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Syntax Semantics

%context

Like JavaScript, λS5 uses an explicit context object, represented
by the identifier %context, to map identifier names to their
values. (The % sign can legally occur in λS5 identifiers. In fact,
it serves as a common prefix for λS5 internals.)

{[#proto: null,
#class: "Object",

#extensible: true]}
A minimal object literal

{[ ]} An abbreviation of the previous object.
{[ ]

"name" : {#value "Customized",

#writable false}}
An object with one unchangeable field.

let (brush = {[ ]})

...
Binding brush to an empty object.

brush["size" = 16.0]

brush["radius" = 9.0]

brush["name" = "Pencil Brush"]
Setting properties of the brush object.

brush["name", {[ ]}]
Getting properties of the brush object. The additional argument
{[ ]} is used in case this property has a getter.

brush["name"] An abbreviation for the previous example.
{[]

'opacity':{
#getter func(this, v) {0.7},

#setter func(this, v)
{throw "unchangeable"}}}

Defining a getter and setter for the opacity property of an ob-
ject. These functions are called when the property is accessed
or modified.

let (getBrushName =

func(b) { b["name"] })

...
Binding getBrushName to a function definition.

label %ret :

...
Declaring a jump label named %ret.

break %ret exp Jumping to the label %ret with the value exp.

Figure 7. A quick reference of λS5 syntax

2 (CApp (CFunc () (none) (CNone) (none)) () (none))
3 (CSeq
4 (CApp (CFunc () (none) (CNone) (none)) () (none))
5 (CLet iden (GlobalId) (CUndefined)
6 (CSeq
7 (CSeq
8 (CAssign
9 (CId %locals (GlobalId))

10 (CId %globals (GlobalId)))
11 (CAssign (CId iden (GlobalId))
12 (CFunc (x) (none)
13 (CLet %locals-save (LocalId)
14 (CId %locals (GlobalId))
15 (CLet return-cleanup (LocalId)
16 (CId x (LocalId))
17 (CSeq
18 (CAssign
19 (CId %locals (GlobalId))
20 (CId %locals-save (LocalId)))
21 (CReturn (CId return-cleanup (LocalId))))))
22 (none))))))))

A smaller code size can be further obtained by semantics-
preserving transformations as in section 5. For example,
eliminating the unused bindings (line 13 and line 15), in-
lining functions (line 2 and line 4) and cleaning useless as-
signments (line 8 and line 18) produces:
(CModule (CNone)
(CLet iden (GlobalId) (CUndefined)
(CAssign (CId iden (GlobalId))
(CFunc (x) (none)
(CReturn (CId x (LocalId))) (none)))))

The final version of the code has around 20 AST nodes.
The overall shrinkage comes from the two kinds of transfor-
mations similar to those in section 4 and section 5. This ex-
ample demonstrates that making assumptions about the pro-
gram can be useful in languages other than λS5.

D. Code Bloat in Racket’s BSL
The Beginning Student Language (BSL) is a small version
of Racket for teaching [10]. Consider this function:
#lang htdp/bsl
(define (len lst)
(cond [(empty? lst) 0]

[else (+ 1 (len (cdr lst)))]))

It desugars to:
1 (module x lang/htdp-beginner
2 (#%plain-module-begin
3 (define-syntaxes (len)
4 (#%app
5 make-first-order-function ‘procedure ‘1
6 (quote-syntax len)
7 (quote-syntax #%app)))
8 (define-values
9 (len)

10 (lambda (lst)
11 (begin0
12 (if (#%app verify-boolean (#%app empty? lst) ‘cond)
13 (let-values () ‘0)
14 (if ‘#t
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15 (let-values ()
16 (#%app
17 beginner-+
18 ‘1
19 (#%app len (#%app beginner-cdr lst))))
20 (let-values ()
21 (#%app error ‘cond
22 ‘"all question results were false")))))))))

The block on lines 3 to 7 performs static arity checks
when len is used in a different module. If this is assumed
to never happen, a semantics-altering transformation could
remove it. The code can be further shrunk by semantics-
preserving transformations. Several expressions here have
no effect or can be specialized, resulting in

1 (module x lang/htdp-beginner
2 (#%plain-module-begin
3 (define-values
4 (len)
5 (lambda (lst)
6 (if (#%app empty? lst)
7 ‘0
8 (if ‘#t
9 beginner-+

10 ‘1
11 (#%app len (#%app beginner-cdr lst)))))))))

Unlike λS5 and λπ , there is significantly less code bloat,
and the bloat that is present seems best dealt with by
semantics-preserving rather than semantics-altering trans-
formations. We posit that this reflects the relative simplicity
of the semantics of BSL.
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