
Do Values Grow on Trees?
Expression Integrity in Functional Programming

Guillaume Marceau
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

gmarceau@wpi.edu

Kathi Fisler
WPI

100 Institute Road
Worcester, MA, USA
+1 (508) 831-5357

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
115 Waterman St

Providence, RI, USA
+1 (401) 863-7600

sk@cs.brown.edu

ABSTRACT
We posit that functional programmers employ a notion called
expression integrity to understand programs. We attempt to study
the extent to which both novices and experts use this notion as
they program, discuss the difficulties that arise in measuring this,
and offer some observational findings.

Categories and Subject Descriptors
D.1.1 [Programming Techniques]: Applicative Programming;
H.5.2 [User Interfaces]: Evaluation/methodology

General Terms
Design, Human Factors, Languages.

Keywords
Programming for novices. Structured editing.

1. Programming with Values
Some people advocate the use of functional programming in
computer science education, especially at the introductory level.
Others oppose it on the grounds that it is not merely outside the
mainstream but may even be unnatural (perhaps suggesting the
latter as an explanation for the former). Unfortunately, this long
debate has seen more heat than light. We believe curricula would
be better served by rigorous studies that examine the purported
advantages and weaknesses claimed by each side.
First, let us review the basic structure of functional programs. The
central idea is that programs exist to consume and produce values,
akin to functions in algebra. Most introductory books completely
eschew side-effects in the student’s programs (even though they
can be described with some effort even in traditionally functional
languages). As a result, students do not see statements, only
expressions. A program is simply a series of definitions, each of
which has an expression body. Each expression may, recursively,
have many nested sub-expressions. The actual computation is
triggered by one or more expressions presented either in the
program source or in an interactive evaluator (sometimes
colloquially called an “interpreter”, even though the underlying
implementation may employ a compiler, JIT, or other strategy).

The functional style raises many questions (as does its more
traditional counterparts). For instance, one might ask how students
relate to the decomposition of computation by statements versus
expressions; how much the problems caused for program
reasoning by side-effects are offset by benefits; at what depth of
nesting students start to have difficulties; and so on. A broader set
of issues is whether functional programming is indeed “natural”
or not. If it is not, then perhaps it is unsuitable in education
(though we must also then ask the same question about algebra
itself, and understand how the answers relate). If it is, then
perhaps some of the complaints about it stem more from instructor
prejudice than from student behavior and perception.
To investigate such questions, we feel it is critical to first ask
more foundational ones about students’ ability to even relate to
how functional programs compute. This paper reports on a first
such investigation. From extensive discussions with experienced
functional programmers, we find (anecdotally) that when reading,
reviewing, and editing programs they understand programs as
trees of expressions, not as a sequence of characters. We use the
term expression integrity to capture this notion of understanding
programs, and examine it in more detail. This concept is
especially important in functional programs because everything
other than a definition is an expression, even the control
operations. We suspect, but don’t study here, that this concept
also applies to imperative programs that have shallow expressions
but do have statements that can nest several levels (e.g., an
assignment inside a conditional inside a loop inside a function).
Observe that “understand” has two senses: syntactic and semantic.
Syntax is what users write (and hence it is what they have
primary, direct control over), while semantics is what happens
when the program runs (and hence reflects whether or not it met
the user’s goal). Computer scientists have long understood the
tension between these two aspects of a language, and indeed
movements such as structured programming grew precisely out of
a direct desire to reduce the gap between the two. Thus, our
investigation of functional programming should employ both
syntactic and semantic angles.
This paper is about questions more than answers. It combines
position (the importance of expression integrity) and discussion
(how we might measure it).

2. Syntactic Studies
Expression integrity is presented in terms of how programmers
understand programs. Of course, we cannot directly observe
“understanding”; instead we must operationalize it. At a syntactic
level, we postulate that there are certain behaviors we expect from
programmers employing expression integrity, such as:

• They finish working with one expression before switching
to another (for nested expressions, they may provide the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICER’11, August 8–9, 2011, Providence, RI, USA.
Copyright 2011 ACM 978-1-4503-0829-8/11/08…$10.00.

highest-level syntactic structure first, then fill in the sub-
expressions, or they may complete sub-expressions in
depth-first order). For languages with parenthetical syntax,
they also maintain (relatively) balanced parentheses as
they edit programs.

• They move and copy whole expressions.
These statements apply both to writing new code and to
modifying existing code. For example, we would expect an
expression-aware programmer to modify existing code by making
edits as needed to a single (possibly nested) expression and
restoring the surrounding expression structure (including
parentheses) before moving on to another expression.
Additionally, when modifying code, we would expect that

• They prefer reusing expressions to typing new code, even
if the number of keystrokes is similar in each case.

Until a programmer has developed a sense of expression integrity,
we would expect them to prefer edit paths with fewer keystrokes,
and to apply edits without regard to the program’s tree structure.
(We observe in passing that these criteria are not limited to
functional programs. A similar notion of integrity surely applies to
statements also, though the rules are more complex.)
In other words, even when their editor permits character-wise
editing (as most modern editors do), programmers with a sense of
expression integrity conceptualize the syntax in terms of
expression trees, and sometimes even avail of editor operations
that atomically handle entire expressions at a time. These
expression-oriented operations effectively endow programmers
with the benefits of structured editing even in an unstructured
editor, thereby avoiding the notorious inflexibility of fully-
structured editors [1] without giving up their benefits.
Naturally, these are just claims (though based heavily on
experience and anecdote). We set out to study these ideas in two
populations: rank beginners, and experts. We first discuss our
setup (Section 2.2), and our results for beginners (Section 2.3);
then we step back and ask how our findings compare against
expert behavior (Section 2.4). Before we get into these studies,
however, it is worth examining the structure of expressions, since
this affects what we can measure.

2.1 The Structure of Expressions
Observe that in a handful of languages (unlike Java, C, etc., where
a program either parses or doesn’t) there are multiple levels of
“expression-ness”. In XML, for instance, the levels are called
well-formedness and validity. Well-formedness simply means that
the basic rules of XML (pointy brackets, appropriate quotation of
certain characters) are being followed, and that the opening and
closing tags match and nest properly. However, a particular XML
language will have additional rules. For instance, in XHTML (a
version of HTML built atop XML), only certain tags are allowed,
only some tags can nest within others, only certain attributes are
legal, and so forth. This latter level of conformance is called
validity. Thus all valid documents are well-formed, but not all
well-formed documents are valid. Krishnamurthi [2] refers to

languages with such a two-level structure as bicameral, since they
mimic the bicameral legislatures of many countries.
Another language family famous for bicameral rules is Lisp.
Well-formed terms (known as s-expressions) meet tokenization
rules and have balanced parentheses, while valid terms are those
that actually parse. In the Racket dialect, for instance, the term (+
1 2) is both well-formed and valid, but (lambda x) is well-
formed but not valid: it survives the “reader” (which converts a
token stream into an s-expression) but fails to parse.
Our studies are conducted with students learning Racket. This
gives us freedom to study programs at either level. While our
tools support both, we chose to study well-formedness (which
largely translates to whether programs are properly parenthesized)
for two reasons:

1. It more closely corresponds to the level at which we
believe beginning students think: they very quickly
understand that programs must be properly parenthesized
even though they do not understand the finer rules of
grammar. Put differently, to beginners, balancing
parentheses probably is what they imagine to be the
primary form of validity.

2. When we study how student performance evolves over the
course of the semester, it is valuable to quantify their
progress. This requires that we can measure the degree of
mis-parsedness of a program. This would presumably be
based on the edit-distance to a properly parsed program,
which is extremely sensitive to the editing operations
available, and thus may be difficult for even experts to
agree upon. In contrast, the degree of parenthetical
imbalance (which, too, must deal with the fact that Racket
programs have both parentheses and brackets) is a much
more objective metric.

It is important to observe that, because every valid program is
well-formed, a program that is not even well-formed is certainly
not valid. Thus, any studies based on well-formedness would
yield a lower-bound on what we would find by studying validity.
Of course, we must be careful when interpreting measurements. It
is sometimes impossible to make edits without temporarily
altering the validity—or even well-formedness—of a program.
This can happen when fixing a typographical error. There are also
edits whose entire point is to alter the way a program parses; in
the process, it may be very difficult (or even impossible, given the
structure of the language!) to make sure every intermediate state
parses properly. We conjecture that programmers can easily
tolerate such mal-formed intermediate programs provided they are
not distracted during edits. Just as humans easily cope with poor
spelling and grammar, a small amount of mis-parsedness seems
entirely reasonable and perhaps cognitively preferable than trying
to preserve parsability at all times.
More broadly, because most other programming languages do not
have a bicameral structure, to generalize our results we must
eventually examine validity also. Naturally, we should also study
languages without a bicameral structure, to avoid confounding
factors introduced by “lots of irritating, silly parentheses”.

2.2 Experimental Setup
We conducted our experiments in DrRacket, a modern (but
intentionally spartan) interactive development environment. Three
characteristics of DrRacket are noteworthy in this paper:

1. DrRacket runs identically (other than default key bindings)
and as a native application on Windows, Mac, and Unix.
Thus users can apply all the edit operations that they are
comfortable with for the platform.

2. Whenever a cursor is placed (by mouse or keyboard) over
a parenthesis, the environment highlights the entire
parenthetical expression that begins or ends at that
parenthesis. (If the parenthesis is mis-matched or dangling,
DrRacket instead colors it pink.) This highlighting
happens automatically without the need for a mode setting,
as is necessary in some other editors.

3. Users can enable keystrokes for manipulating entire s-
expressions, imitating those built into Emacs. Most of the
advanced programmers described in this paper know these
keystrokes, but none of the beginners were shown them
(they are not easy to find without reading the manual, so
most students never discover them).

Each user in our studies enabled logging software in DrRacket.
This software logged all key and mouse events in the environment
and could replay them, so we could study the precise evolution of
the program source and watch a user’s editing as a “movie”. (The
logger is a DrRacket plugin, so it does not capture any interaction
outside the environment such as passwords, etc.).

2.3 Analysis of Student Data
In spring 2010 we collected detailed logs of students’ interactions
with DrRacket during the lab sessions of an introductory
programming course. Each lab ran for 50 minutes. There were
six lab sessions (one per week) over the duration of the course.
Sixty students out of 120 consented to provide data.
Using these data, we asked three initial questions about students:

1. What is the pattern of well-formedness of their programs?
Do they keep their parentheses mostly balanced, or are
there wild fluctuations of imbalance?

2. When modifying existing code, as opposed to creating
new code, is their behavior any different? For instance, is
there a significant difference in their edits after error

messages as opposed to edits after the successful passage
of tests (which suggests they have completed a task and
are moving on to new code)?

3. Do these behaviors change over the course of the semester,
as they (a) become familiar with the language syntax, (b)
acquire greater skill with the programming environment,
and (c) realize (from experts such as professors and TAs)
that letting programs become significantly imbalanced is
likely to lead to more errors and make it harder to find and
fix them?

To observe the extent of unbalancing over the course of a lab, we
computed the amount of unbalancing after each change to the
parenthetical structure. We used an A* search with alpha-beta
pruning to compute the shortest edit distance to a balanced buffer.
The search could either add a parenthesis to match a dangling one,
remove a dangling parenthesis, or turn a parenthesis into a
different kind (from round to bracket or vice versa).
Figure 1 shows the behavior of three students in the third lab. The
label (A, B, C) reflects their final course grade. All three start with
a balanced buffer (because it’s empty), then compose some code.
While doing so, the buffer becomes momentarily unbalanced. The
students differ in how they manage this imbalance. Student A
seems to have developed a habit of frequently returning to a
balanced buffer; she also frequently compiles her code, possibly
to confirm its well-formedness before going further. Student B
also frequently restores the buffer’s balance, but does not compile
as often. Student C spends almost the entire second half of the lab
with a deeply unbalanced buffer. Afterwards, he has to make four
compilation attempts before returning to a valid program.
We sought to summarize these behaviors with a metric so that we
could make aggregate comparisons across students, across time,
and so forth. A natural first metric is:

1. Area under the curve: We could simply sum the total
extent of imbalance the student’s program demonstrates
during an editing session.

This metric does not, however, capture whether or not a student
regularly brought the buffer back into complete balance. Instead,
we might want to measure:

2. Average length of runs between zeroes: On the premise
that a long imbalanced edit is worse than a short one (since

(A)

(B)

(C)

Figure 1. Different behaviors towards the maintenance of well-formedness and validity. The y-axes shows the amount of imbalance in
the third lab (50 minutes) for an A-student, a B-student, and a C-student, respectively (same scale for all three). The highest peak is 9.
Filled rectangles represent successful compilation attempts; x-ed rectangles are compilations that produced an error message.

the student must concentrate longer), we could emphasize
the duration of imbalances over their size.

But this fails to capture our intuition that the more imbalanced a
buffer is the greater the cognitive burden borne by the student
(e.g., having to be conscious of the nesting depth). The summary
measure we finally settled on combines the two previous metrics:

3. The mean of the areas under the curve between zeroes:
Split at each point where the buffer returns to a balanced
state; compute the area of each; average these areas.

This enables us to handle what might appear to be confounding
data. For instance, suppose a student begins a program thus
(where the arrow represents the cursor position):
 (define (len l)
 (cond
 [(empty? l↑
The program has a nesting depth of four. It is unclear at this point
whether the student will eventually balance everything. In
contrast, a different student may always close every parenthesis
they open right away, writing the above example as follows:
(define (len l)
 (cond
 [(empty? l↑)]))
By looking at sequences of edits, our metric lets us focus on the
entire editing behavior, rather than trying to guess from an
intermediate state what the final state will be.

Before analyzing the data, it is worth considering different styles
of editing activity. In particular, writing new code is potentially
quite different from changing existing code, since the former can
much more easily be structural while the latter may necessitate
non-structural changes. Thus, we choose to partition edits into
those yielding new code versus those that were fixes to errors.
To classify edits, we assume (in line with prior work [3]) that
edits after a successful compilation—until the next compilation—
consist of new code. The one exception is when a compile returns
a parenthesis error; in this case, we continue rather than terminate
the edit sequence. Thus, new code sequences begin with a
successful compilation, continue through any number of
compilation attempts signaling a parenthesis error, and end on
either another successful compilation or a non-parenthesis error.
We classify all other edit sequences—starting at a non-
parenthetical error—as fixing errors. We considered only edit
sequences which added or removed at least one parenthesis.
Given this proposed operationalization of expression integrity,
and our assumption that successful development of expression
integrity is essential for student success in this programming
course, we can then ask whether our metric correlates with the
final course grade (unfortunately, individual lab assignments were
not graded). We thus computed this correlation across the set of
students who provided data for at least four labs during the course.
Figure 2 shows the result of the correlation. For episodes of
writing new code (in (a)), the linear fit is statistically significant
(p=0.032 albeit with an R2 of 0.18). When fixing errors (b) it was
not significant.
One might wonder whether this relationship occurs because better
students make fewer parenthesis errors overall. But this is not the
case. Figure 3 shows there is a slight correlation between the
number of parenthesis errors and the final course grade, but this
relationship is not statistically significant. We could also ask
whether students’ score on the metric improves over time.
Unfortunately, because the difference in difficulty between labs is
neither uniform nor monotonic, the between-task variability
would mask any effects of learning. Indeed, we are not able to
find any significant improvement effects across the term.

2.4 A Study of Experts
We believe that the buffer imbalance of experts can serve as a
useful baseline for our expectations of students. We were able to
conduct a small study of experts at the annual Racket user
conference. Our study participants build large systems in Racket,

(a)

(b)

Figure 2. Correlation between the amount of imbalance
(x-axis) and course grade (y-axis) when (a) writing new code
(significant), and (b) fixing existing code (not significant).

Figure 3. Correlation between the number of parenthesis
errors and the final course grade (not significant).

ranging across academia, government, and industry. Some of
them indeed use DrRacket on a daily basis.
Due to the limited availability of their time, instead of asking
them to write full programs, we instead gave them a small correct,
working program, and asked them to refactor it to remove some
operations and use others instead; the change did not alter the
program’s behavior, only its syntax. All 10 participants
successfully completed the task.
In designing the task, we ensured that the edit could be performed
purely with the s-expression operations, so that it would be
possible to never change the parenthetical balance of the program
(and, in particular, keep the imbalance at zero). Some experts did
strive to keep their buffer’s parentheses balanced, and some
seemed to use the compiler to confirm well-formedness of their
program at intermediate points. Figure 4 shows the distribution of
the metric for both students and experts (with experts in (c)). The
students do score higher, but the difference could be attributable
to the fact that students were creating new (and buggy) programs,
not merely refactoring existing code.
In particular, our logging information suggested the experts made
almost no use of the s-expression editing commands. As a follow-
up, we conducted a survey to ask them whether

1. this was indeed true; if so,
2. whether their behavior in this study was representative of

their usual DrRacket programming style; and, if so,
3. whether they mentally still viewed the program as a

collection of trees or whether they viewed it as a sequence
of characters.

All the participants confirmed that our observation of their
behavior was correct. They stated that in general they made little
to no use of the s-expression editing commands, though a few
used the traversal commands. Despite this, they confirmed that
they absolutely do view the program in terms of trees of
expressions independent of which editor they are using, though
some participants added that they sometimes also viewed the
program in terms of lines (rather than characters), especially when
they need to perform block edits. (We conjecture that so do the
others, even though they did not say so explicitly.)

3. Semantic Studies
Different languages employ different computational models,
which in turn rely on expression integrity in different ways. In
functional programming, even control operators are expressions
that return values to the surrounding computation. Each node in
the “tree of expressions” corresponds to a value which substitutes
for the node while reducing a program to a result. In imperative
programming, expressions interleave with statements that store

values in memory or specify control structure. The “tree of
expressions” is insufficient for modeling semantics, in exchange
for relying less on the tree model to explain computation.
In our functional programming context, then, we expect that
students who lack expression integrity would struggle to
understand how programs yield results. Operationally, we expect
that students with a basic semantic sense of expression integrity

• Can explain how different expression types (arithmetic,
data creation, control operators) reduce to values.

• Can explain what an individual expression contributes to a
function’s result.

A student with a strong sense of expression integrity should also
reflect the following skills for maintaining and editing programs:

• They can identify the expressions whose values might
change as a result of editing a particular expression.

• They can identify which sub-expressions need to be edited
(and how) in order to change the result of an expression.

The metrics about the impact of edits point to a fundamental
difference between functional and imperative programming. In the
functional setting, all of our semantic metrics have an implicit
frame condition [4]: if an expression changes, the values of its
sibling expressions do not change. This is not true in an
imperative setting, because the changed expression could have a
side-effect that causes an unedited expression to produce a
different answer. Put differently, in functional programming, the
syntactic building block (the expression) corresponds directly to
the semantic building block (the value). We would expect this
difference to manifest itself in semantic studies of expression
integrity within each programming style. However, space
precludes us from discussing these issues more.

4. Related Work
Several works have sought to identify the component skills that
novice programmers must learn. Mead et al. has an extensive
survey of the topic [5], and identifies dependencies between skills.
PROUST uses their skill decomposition to automatically detect
which subgoals were intended to be met by a student’s code [6].
Projects that attempt to operationalize the skills they identified are
less common. Anderson and Reiser’s LISP Tutor models the fine-
grained goal-setting done by novices through 500 production rules
[7]. These rules are then used to trigger automatic feedback, to
select exercise sequences for the student, and to predict quiz
performance.
Expression integrity (thinking of code as a tree) is an instance of
chunking. Both Adelson [8] and Shneiderman et al. [9] find
multiple lines of evidence that novice programmers transition

 (a) (b) (c)

Figure 4. Histograms of the values of the metric of unbalancing for (a) students writing new code, (b) students fixing code, and
(c) professionals during a refactoring exercise.

from syntactical chunking to some form of semantic chunking, but
neither pinpoints the details. Fix, et al. give empirical support for
five characteristics of how experts chunk the relationship between
the functions and variables of a program, and to its goal [10]. We
are not aware of any previous attempt to operationalize expression
integrity specifically.
Some researchers have looked for patterns in beginners’ editing
behaviors. Rodrigo, et al.’s error quotient metric [3] summarizes
the kinds and locations of errors a student makes, along with the
locations edited in response. Like our metric of unbalancing, the
error quotient correlates with final grades, but the two metrics
satisfy different goals. The error quotient aims to detect where
students struggle regardless of the conceptual cause, whereas we
focus on the impact of expression integrity.
Dyke’s work counts students’ use of IDE features such as the
multi-tab interface, breakpoints, and code auto-completion [11],
and finds that these too correlate with final grades. In addition, the
work finds that usage of more advanced features correlates with
the rank difference between two members of a homework pair.
Ko, et al.’s study [12] of the editing behavior of expert Java
programmers found patterns similar to those in Section 2.4:
experts regularly pass through invalid buffer states while editing,
but quickly repair the code and avoid prolonging the invalidity.

5. Perspective and Context
This paper outlines a research agenda centered around expression
integrity, which in turn focuses on how students understand the
structure of programs. We believe that understanding program
structure, both syntactically and semantically, is a core skill in
effective programming. We offer one preliminary (and language-
sensitive) operationalization of expression integrity at the
syntactic level. Naturally, we must address other syntaxes, study
this concept at the semantic level, and correlate it with skills in
debugging, maintenance, code reviews, etc.
Our preliminary findings, if borne out by more detailed studies,
raise questions of what designers of programming environments
should do in terms of syntax manipulation operations. On the one
hand, fully-structured editors such as that of Scratch [13] are
clearly popular and successful; indeed, the Scratch editor makes it
impossible to create ill-formed programs. On the other hand, we
are not aware of validation of the Scratch editor principle for large
programs; any such studies would need to be reconciled with
known data on structured editing [14]. What does seem apparent
is that, given a free-form text interface, at least some experts
employ this over structured commands. Whether it would still be
worth teaching these commands to beginners to instill a notion of
expression integrity needs further study.
Longer-term, expression integrity gives a foundation for studying
the relative merits of functional and imperative programming for
beginning students. Syntactically, programs correspond to trees in
both styles. Semantically, the role of this tree differs significantly.
By aligning the syntactic and semantic models through the tree
structure, functional programming asks students to work with only
a single mental model of programs. Imperative languages reduce
semantic reliance on the tree model at the cost of introducing a
second model with no framing condition. Understanding the cost-
benefit tradeoffs of these models to each of program construction,

debugging, and maintenance could provide significant input to the
debate about suitable programming methods for novices.
Acknowledgments. We thank the US NSF for grant support, and
appreciate comments from the anonymous reviewers and Matthias
Felleisen. We thank the students and Racket users who
participated in these studies.

6. References
[1] P. Miller, J. Pane, G. Meter, and S. Vorthmann, “Evolution

of Novice Programming Environments: The Structure
Editors of Carnegie Mellon University,” Interactive Learning
Environments, vol. 4, 1994, pp. 140-158.

[2] S. Krishnamurthi, “Programming Languages: Application
and Interpretation,” 2007.

[3] M.M.T. Rodrigo, E. Tabanao, M.B.E. Lahoz, and M.C.
Jadud, “Analyzing Online Protocols to Characterize Novice
Java Programmers,” Philippine Journal of Science, vol. 138,
2009, p. 177–190.

[4] J. McCarthy and P.J. Hayes, “Some philosophical problems
from the standpoint of artificial intelligence,” Machine
Intelligence, vol. 4, 1969, p. 463–502.

[5] J. Mead, S. Gray, J. Hamer, R. James, J. Sorva, C. St. Clair,
and L. Thomas, “A cognitive approach to identifying
measurable milestones for programming skill acquisition,”
ACM SIGCSE Bulletin, vol. 38, Dec. 2006, p. 182.

[6] W.L. Johnson and E. Soloway, “PROUST: Knowledge-
Based Program Understanding,” IEEE Transactions on
Software Engineering, vol. SE-11, Mar. 1985, p. 267–275.

[7] J.R. Anderson, F.G. Conrad, and A.T. Corbett, “Skill
acquisition and the LISP tutor,” Cognitive Science, vol. 13,
1989, p. 467–505.

[8] B. Adelson, “Problem solving and the development of
abstract categories in programming languages.,” Memory &
cognition, vol. 9, Jul. 1981, p. 422–433.

[9] B. Shneiderman and R. Mayer, “Syntactic/semantic
interactions in programmer behavior: A model and
experimental results,” International Journal of Computer &
Information Sciences, vol. 8, Jun. 1979, p. 219–238.

[10] V. Fix, S. Wiedenbeck, and J. Scholtz, “Mental
representations of programs by novices and experts,”
INTERACTʼ93 and CHI'93 conference on Human factors in
computing systems, ACM, 1993, p. 74–79.

[11] G. Dyke, “Which Aspects of Novice Programmersʼ Usage of
an IDE Predict Learning Outcomes?,” Special Interest Group
on Computer Science Education (SIGCSE), 2011.

[12] A.J. Ko and H. Aung, “Design requirements for more
flexible structured editors from a study of programmersʼ text
editing,” CHI, 2005, p. 1557–1560.

[13] D.J. Malan and H.H. Leitner, “Scratch for budding computer
scientists,” ACM SIGCSE Bulletin, vol. 39, 2007, p. 223.

[14] A.J. Ko, “Designing a Flexible and Supportive Direct-
Manipulation Programming Environment,” IEEE Symposium
on Visual Languages Human Centric Computing, 2004, p.
277–278.

	1. Programming with Values
	2. Syntactic Studies
	2.1 The Structure of Expressions
	Experimental Setup
	2.3 Analysis of Student Data
	2.4 A Study of Experts

	3. Semantic Studies
	4. Related Work
	5. Perspective and Context
	6. References

