
Programming Languages for

Compressing Graphics

Morgan McGuire, Shriram Krishnamurthi and John F. Hughes

Computer Science Department
Brown University

Providence, RI, USA
Contact: sk@cs.brown.edu

Abstract. Images are programs. They are usually simple instructions to
a very specialized interpreter that renders them on screen. Image formats
therefore correspond to different programming languages, each with dis-
tinctive properties of program size and accuracy. Image-processing lan-
guages render large images from small pieces of code. We present Evolver,
a language and toolkit that perform the reverse transformation.
The toolkit accepts images in conventional graphics formats like JPEG
and uses genetic algorithms to grow a program in the Evolver language
that generates a similar image. Because the program it produces is often
significantly smaller than the input image, Evolver can be used as a
compression tool.
The language balances the tradeoff between having many features, which
improves compression, and fewer features, which improves searching. In
addition, by being programmatic descriptions, the rendered images scale
much better to multiple resolutions than fixed-size images. We have im-
plemented this system and present examples of its use.

1 Introduction

The growing volume of data on the Web has resulted in enormous demands
on network bandwidth. Improvements in network access, such as the increasing
availability of high-speed connections outside commercial venues, have simply re-
sulted in correspondingly larger data and the greater use of bandwidth-hungry
formats. Web designers have come to rely on such availability, producing denser
sites, and users in turn have higher expectations. As a result, the principal cost
for many sites is simply that of leasing sufficient bandwidth. This cost dwarfs
that of providing and maintaining content. Since visual formats are central to
many Web interfaces, their compression is of key importance in making exist-
ing bandwidth more effective. Keeping visual formats small will have obvious
benefits to Web designers, site administrators and users.

The common approach to compressing data is to use a standard lossless
compression algorithm, such as the many variants of Lempel-Ziv [19], which
reduce redundancy using a dictionary. Some formats like JPEG [18] are tuned
specifically for graphics by accepting imperfect (lossy) compression and reverse

engineering the human visual system to determine where compression artifacts
will have the least perceptual impact. There are unfortunately limitations with
these approaches that preclude many improvements:

– They still result in fairly large files. The benefits of compression are limited
by the artifacts introduced when the nature of the image does not match the
compression technique. For instance, JPEG was designed for images whose
frequency decomposition to is similar to photographs. It is less effective on
images with many high-frequency components, e.g., diagrams with sharp
distinctions between differently colored regions or images containing text.
GIF was designed for images just like these, but produces dithered and
poorly colored results for natural images like photographs. Neither performs
well when both kinds of data are contained in a single image.

– The resulting images are at a fixed resolution. Proper display on devices of
varying resolution will only grow in importance as new devices such as PDAs
are deployed as browsers.

– Because the output format is fixed, the server administrator cannot trade
space for time. In particular, running the compression utility, which is a
one-shot activity that benefits all users, for a longer time will not result in
a smaller or better image.

Designers address some of these problems by replacing static entities with pro-
grams that generate them (e.g., Flash, SVG objects). Even a basic image is, in
the abstract, a program. For example, a GIF file contains a series of run-length
encoded rasters. The run-length blocks can be considered instructions for a very
primitive machine which produces its output in the form of an image.

Formats make the idea of transmitting a program as a form of compression
more explicit. Formats such as Flash, Shockwave and SVG [3] use a richer under-
lying language that keeps objects distinct and resolution-independent, allowing
implementors to describe vector-based graphics. Flash and Shockwave also add
time-varying instructions and loops to enable animation. The virtual machines
for these programs are Web browser plug-ins. Using Java to generate animations
is an extreme example of this same principle, namely programmatic compression:

a program is often much smaller than the output it generates.1

A program is also much more capable of scaling by resolution (recall Knuth’s
METAFONT [11] for generating fonts from typeface descriptions).

The Flash approach reflects a valuable principle, but has many practical
shortcomings. It requires the manual construction of programs from constituent
arcs, lines, shades, and so forth. Many complex entities, such as texture-mapped
regions, are difficult or impossible to specify using so-called vector graphics prim-
itives. Professional Web designers thus prefer to use tools such as Adobe Pho-
toshop to generate high-quality images with effects like drop shadow, texture,
and compositing of scanned/digital photographs. An artist can create such an
1 For a non-visual example, consider programs that generate the digits in the decimal

expansion of π.

image in Photoshop and import it into a tool like Flash as a JPEG, but this
immediately loses the benefits of a programmatic description, such as effective
scaling and extreme compression. The result is a comparably large and pixel-
lated image embedded in an otherwise small and resolution-independent vector
description. Ideally, designers should generate images with their favorite gen-
eral purpose tools like Photoshop; the compression technique must integrate into
their existing design flow.

The rest of this paper is organized as follows. Section 2 outlines the principles
underlying Evolver, our language for graphical image compression. Section 3
provides the details of Evolver’s language and tools. Section 4 describes some of
our results. Section 5 discusses related work. Finally, section 6 offers concluding
remarks and discusses directions for future work.

2 Generating Image Descriptions

The display software for a GIF must decode the format’s run-length encoding,
thereby effectively acting as an interpreter. Similarly, JPEG images depend on
the encoding of small blocks of an image; the display software must again decode
the data for display. As a more extreme example, various “fractal compression”
algorithms rely on more complex encodings; iterated function systems [1, 4] and
partitioned iterated function systems [10] rely on the idea that small parts of
an image may resemble translated, rotated, scaled-down copies of other larger
portions; a simple version of the key idea is that some savings can be found by
representing the smaller portion via this transformation rather than directly.2

Each of these compression algorithms can be seen as exploiting some known
characteristic of images: the tendency to be scan-line coherent, the tendency to
have large blocks with small variation, or the tendency to have little pieces that
look like scaled versions of larger pieces. The result of each of these insights is a
particular program (a decoder) that takes a certain amount of data (the “GIF”
or “JPEG” or “PIFS” image) and converts it to an image (a rectangular array
of colors).

Note that certain types of image are well-suited to each of these approaches:
scanned-text compresses pretty well with GIF, in part because of the long
“white” runs between the lines. Photos of natural phenomena seem to be well-
suited to iterated-function-system compression. And JPEG works well on interior
photos, where things like walls present relatively large, relatively constant areas.
These techniques tend to produce large files or introduce artifacts when applied
to the wrong kind of images.

One might therefore imagine an image format that stored an image either as
a GIF or a JPEG or a PIFS, by trying each one and selecting the one with the
best compression results; the particular type used could be indicated with a few
bits in a header. But from this, a more general approach suggests itself: why not
consider all possible programs, not just the handful that have been written down

2 Discovering the correct transformations is the hard part of the compression process.

as JPEG or GIF decompressors, that can generate an image and simply record
the one that best generates this image? (Note that in this case, the decoder and
the data it operates on are all considered part of “the program”; indeed, the
decoder-and-data model of generating images is only one of many possibilities.)

While the idea of searching “all possible programs” seems ludicrous at first
blush (there are an infinite number of them, for example), searching a rich col-
lection of programs turns out to be feasible with some insight into the design of
the language in which the programs are written and the goal of the program.

Evolver

We present Evolver, a collection of tools for visual image compression. Because
artists are skilled at the use of image manipulation software, not programming,
Evolver presents a simple interface: the designer provides an image (the source
image) built with their favorite tools. Evolver reduces this image to an Evolver
language program (the description) which, by rendering a reasonable approxi-
mation of the image and being small, exploits the power of programmatic com-
pression.

Evolver has two parts. The first program is an encoder, which consumes the
source image and produces its description. It does this by searching the space of
all legal descriptions to find ones that generate an image that is visually similar
to the source image. The second, a decoder, is a fast interpreter for the Evolver
language, which renders the description as an image for the client. The decoder is
currently implemented in Java [7], and is hence easy to deploy in Web contexts.3

Evolver confronts two hard problems. First, it is difficult to search the space
of all programs, because the space is large, and small changes to the source of a
program can lead to large changes in its output. Second, it’s difficult to create
an objective measure of visual similarity. Evolver therefore employs randomized
search algorithms. Our current implementation uses genetic algorithms, following
Karl Sims’s ideas from a decade ago [17]; that is, Evolver breeds a program that
generates the desired image. We could use other algorithms such as simulated
annealing instead.

Because it uses an optimizer to search, the effectiveness of Evolver depends
on the choice of an appropriate fitness function. We could obtain a perfect image
match by subtracting the current approximation from the original and requiring
that the difference be zero; this would, however, take unreasonably long to con-
verge. This also fails to exploit the feature that several different descriptions can
render identical-looking images within the tolerance of the human visual system.
We instead use more flexible metrics that account for desirable visual proper-
ties, such as matching texture and shape, rather than individual pixel values.
For example, it is acceptable to compress one white noise image into another

3 The Java bytecode for the decoder is substantially larger than the descriptions it
decompresses into images; we assume that for practical deployment the Java decoder
would be downloaded once and used many times, so its size does not pose a problem.

where no individual pixel matches, so long as we preserve the statistical proper-
ties of the noise. We are not aware of a pre-existing compression technique that
uses the property that two noise signals with the same statistics are visually
indistinguishable.

Evolver rewards longer runs by producing higher quality matches. Some of
these programs grow in size to improve the approximation. Over time, however,
Evolver may also find smaller programs that generate the same image. Therefore,
Evolver presents the designer a range of images corresponding to the original;
the designer can pick the smallest or best, or even choose several for use in
different contexts.4 The image’s description (an Evolver program) then becomes
the object distributed to clients.

3 The Evolver Language

Evolver’s success relies crucially on the choice of language. Not all choices of lan-
guages automatically accomplish compression. For instance, consider the trivial,
single-instruction language whose one instruction consumes the coordinates and
color of a point and shades it accordingly. Slavishly translating each pixel in
the source image into an instruction in this language would accomplish little,
and might well expand the size of the description. In contrast, because many
images contain considerable redundancy, adding abstraction mechanisms to the
language can lead to programs that account for this redundancy, thus removing
it in the image’s description. Run-length encoding is a simple example of this:
a “repeat n times” mechanism in the trivial language above would allow it to
implement run-length encoding.

The benefit of a larger language is obvious: the more powerful its instruc-
tions, the greater the likelihood that a concise description exists in the language.
Another benefit of a larger language is that it allows us to encode something of
our knowledge of the structure of images. The Collage primitive of Evolver,
described later in this section, is a good example of this kind of domain-specific
construct.

The benefits that ensue from large languages mask a significant shortcoming.
The larger the language, and the greater its parameterizations, the harder the
genetic algorithm needs to work to find even valid programs,5 much less ones
that render a useful approximation to the source image. This is the central ten-
sion in the design of Evolver’s language. To understand the explosion of search
4 The smallest and best criteria can be combined into a single criterion by accumu-

lating the per-pixel color value differences between Evolver’s result image and the
source image and counting the number of bits needed to encode those deltas against
each description. This is overly strict because different pixel values do not necessarily
produce visually different images. In practice, there is no established algorithm for
reliably measuring the perceptual error in an image approximation and we are left
with appealing to a human observer to obtain the best results.

5 Sims finessed this issue by creating a language/breeding system in which every pos-
sible mutation was a valid program. We follow a similar approach, and discuss this
issue further in section 5.

complexity that results from adding language features, consider variable bind-
ing, a feature that is useful in programming languages used by humans but is
particularly difficult for a search program to use effectively. The search program
must both bind a variable and use that binding for it to contribute compression.
Evolving both of those code fragments simultaneously in a way that increases
match quality may be a low probability occurrence. In contrast, highly nested
and self-similar programs are easy for the search program to generate but look
nothing like the programs a human would write. Furthermore, Evolver optimizes
globally over an image, and may perform filter steps that affect different portions
of an image differently, in clever ways a human is unlikely to engineer.

The Evolver language is a simple, functional language, based on that used by
Sims. It provides a rich set of primitives that render various shapes on screen. We
describe these primitives in groups, with some brief rationale given for each. All
primitives operate on (and produce) matrices, which correspond to pixel samples
in an image; thus a matrix is a 3D array of values arranged into a rectangular
array of color vectors, where a vector is a triple of scalars, and a scalar is a
number between -1.0 and 1.0. In some cases, it’s natural to do something to the
first entry of each triple; the array of all these “first entries” will be called the
“first channel” of the matrix. Because at display time, each triple is interpreted
as the red, green, and blue components of a pixel, we’ll sometimes speak of the
“red channel” as well.6

The interpretation of an Evolver program depends on the dimensions of the
final image; all matrices in the program are of these same dimensions, which
enables resolution independence. Some of the primitives in the Evolver language
use stock images as constants, which do not mesh well with resolution indepen-
dence. To address this, a high-resolution stock image is appropriately filtered
to the matrix size and then sampled at the given size. This means an Evolver
program is really parameterized by the output image dimensions; the primitives
are designed to have the characteristic that a low-resolution result of a program
looks like a scaled-down version of a high-resolution result of the same program.

We allow values to be coerced between scalar, vector, and matrix types.
Vector values can be derived from a matrix by operations like “compute the
average color the image.” This has the advantage that it is reasonably scale-
independent: whether the images we’re working with are 10x10 or 300x300, the
average of all pixels is roughly the same. Scalars can be obtained from vectors
by chosing a single channel or the average. A scalar is coerced to a vector by
repeating it three times; a vector is coerced to a matrix by repeating it the
necessary number of times.

The full Evolver language grammar in BNF notation is given by:

ELValue := ELMatrix | ELScalar | ELVector
ELOperator := Add | Sub | Blur | Noise | ...
ELCall := ELOperator x ELExpression*

6 The mapping from the interval [−1.0, 1.0] to colors is due to Sims: negative values
are clamped to no intensity; numbers between 0 and 1 map to the full range of
intensities.

ELExpression := ELCall | ELScalar | ELVector
ELMatrix := ELVector*
ELVector := ELScalar x ELScalar x ELScalar

where an ELScalar is a real number between -1 and 1.

3.1 Fitness Function

Our fitness function, which may be simplistic by the standards of the computer
vision community, attempts to match properties of images that are known to
affect the human visual system. The properties we use are:

– edges,
– per-pixel intensity,
– pixel color,
– average color over large regions (image segments),
– average color over small regions.

We compute these properties of the input and current image, and sum the dif-
ferences along each of these metrics. We choose the sum to avoid preferring
generations that succeed in a few metrics but greatly fail in the others.

Edges are a crude measure of frequency data, so an area in an image that has
high frequency will appear densely populated with edges. High-frequency areas
(such as images of leaves and grass) will match poorly with low-frequency images
such as gradients and constants, and well with other high-frequency areas such
as noise and stock images. We tried to employ the magnitude of the gradient of
the image, which is a better measure of local frequency content, but found that
it gave poor matches compared with the edge detector.

3.2 Language Primitives

The language grammar reveals that the core of Evolver lies in its set of primitives.
The details are not essential to the larger point and are too large to print here.
Instead, we provide detailed information on the Web:

http://www.cs.brown.edu/people/morgan/evolver/

Here, we describe the categories of primitives with some commentary on the
graphical motivation for each type of primitive.

Variation Sources To produce compact representations of nearly-constant ar-
eas of an image (which are often good targets for compression), it helps to have
some functions that produce slowly-varying signals, which can then be arithmeti-
cally mapped to generate periodic signals (via sin or cos), or can be used directly
to represent slowly-varying regions of the input images. Similarly, band-limited
noise has been known to be very valuable in texture generation [5]; we therefore
include primitives that generate this directly. In all cases, we use Perlin’s noise

Fig. 1. A few of Evolver’s image primitives.

function, but with a constant “seed” so that the results are reproducible. Finally,
purely statistical information about an image can help to generate patterns that
may be likely to resemble those appearing in other images “like” this one; we
therefore have primitives that are images such as those shown in figure 1. (Note
that none of these images was actually in the test data set.)

Mathematical Transformations Following Sims, we allow basic arithmetic
operations on matrices, and element-wise transformations such as mathemati-
cal (sine, cosine) and logical (and, or) operations. Some specialized operations
include ExpandRange, which expands the dynamic range of a matrix’s contents
from (0, 1) to (-1, 1). This has the effect of enhancing the contrast in an image,
while reducing the average brightness.

Color Some primitives reinterpret or convert channels between RGB and HSV.

Geometric Pattern Generation Tools A few primitives help with the rep-
resentation of images that have some geometric regularity to them, by providing
various natural transformations. These include symmetric mirrors, splits and
zooms.

Combinations Naturally, some of the most important primitives are those
that combine images in interesting ways; ordinary arithmetic operations have
been discussed above, but the following operations are richer, and preliminary
evidence suggests that Rotate, HueShift, and Interpolate are powerful enough
to be selected often by Evolver.
Rotate(matrix, matrix): Rotates the first image by the average value of the
red channel of the second argument (averaged over whole image); tiles missing
areas.
Interpolate(matrix, matrix, matrix): Linearly interpolates the first and
third arguments using the second as the blending value.
Distort(matrix, matrix): Displaces the pixels of the first argument by the
values of the second (as if refracting through glass).
EnvironmentMap(matrix, matrix): Interprets the first argument as a height
map and uses the second as a color environment map (as if reflecting the second

image).
HueShift(matrix, matrix): Shift the overall hue of the first argument by av-
erage red value of the second argument.
Collage(matrix*): Colors different segments with different textures.

The last of these deserves special comment: because it is hard for Evolver
to determine how to partition the image, we start the search with a “Collage”
primitive. This depends on a first step: we take the target image and compute
a “segmentation” of it, breaking it into regions of similar hue. The segmenta-
tion algorithm is relatively naive, and tends to produce regions which may not
represent terribly precise segmentations, but which are extremely amenable to
run-length encoding, and hence can be compactly represented. This segmenta-
tion is provided as “data” to the evolver program (and its size is taken into
account when we measure compression!); the primitive collage(m1, m2, ...)
creates an image where pixels from segment 1 are taken from the matrix m1,
those from segment 2 are taken from matrix m2, and so on.

3.3 Linguistic Observations

Many of the primitives were chosen because they worked well in Sims’s original
work; others were included because they have proven useful in image processing.
Evolver’s language, as with most other programming languages, grows through
an evolutionary process. The language we currently have reflects a very capable
set of primitives that renders a diverse stable of images.

Our primitive set is not minimal by any means: several primitives can be
built from simple combinations of other primitives. They were included as a way
of injecting domain knowledge into the search process to make it converge faster.
For example, a translation operation can be generated as an application of the
form distort(matrix m, matrix c) where c is a constant matrix, and indeed,
Evolver often uses this idiom; thus including Translate as a new primitive is
natural.

In general, we inject domain knowledge at three points:

– The selection of primitives, as explained above.
– The mutation strategy: one of our mutations involves adjusting a scalar by

a small amount, for example. Large adjustments caused too-drastic changes
in the results; tiny adjustments made it hard to ever “get where we needed
to be.” Hence we chose a modest average adjustment to scalars. Similarly,
in the mutations that wrap an expression in a larger one or trim away part
of an expression, we recognized the need to balance the frequencies of these
operations so that the size of expressions did not tend to grow without bound.

– The fitness function: by adjusting the fitness function to be sensitive to ap-
proximate edge-placement, we made substantial improvements over an ear-
lier L2-distance function. The better that one can match the fitness function
to the human visual system, the better the results will be.

4 Experimental Results

Our test data set was a series of outdoor photographs by Philip Greenspun
available on photo.net. We loaded each image into the encoder and allowed it
to run for a fixed period of time. In each case, the encoder segmented the image
and ran for 10 minutes on each segment, then combined the segments using
the collage operator and ran for an additional 10 minutes on the combined
expression. The parameters used to tune the genetic algorithm will be available
on our website.

Fig. 2. Some uses of Evolver.

The figure on the left shows a poor result from Evolver. The source image
is in the lower left corner. This is an image of a lake surrounded by trees, with
mountains in the distance. In the lower right is an image showing the magnitude
of the gradient of the source image. This is not used by the encoder but is useful
for evaluating the quality of the results and understanding the matcher. Light
values in the gradient correspond to areas of high frequency, like leaves, and dark
values correspond to low frequencies like sky.

The upper left image shows the image after compression by Evolver and
the upper right shows the gradient of this image. While the encoding contains
visible artifacts and is thus inferior to the compression available through a GIF
or JPEG, it demonstrates that the evolutionary approach is clearly feasible.
Evolver correctly matches the hue and intensity in the image, creating bright
green areas where the trees were illuminated and dark green areas where the
trees were in shadow. The sky and lake are a uniform grey, averaging the color
of the lake and mountains. The clouds are pink. Looking at the gradient, we
see that the encoder matched high frequency textures to the tree areas and

low frequencies to the lake and sky. The mountains are absent entirely. This is
because the segmentation failed to distinguish between the sky and mountains,
so Evolver created a single texture for both of them.

The figure on the right shows a much better result. The source image is
a close-up view of some maple trees. After 40 minutes, Evolver successfully
matched both the frequency, color and texture of the source image. The encoded
image has minimal artifacts, and thus indicates that Evolver can successfully
function as a compression algorithm.

As a multiresolution experiment, we compressed an 128x128 original image
using Evolver and as a 64x64 JPEG. The goal was to store the image using very
few bits without losing all detail. We then decompressed and displayed the image
at 768x768. Evolver’s procedural representation preserves high frequency detail.
The small JPEG image is blocky when viewed at 12x the encoding size. Below
are zoomed in views of a few pixels from each to show the difference.

Virtual environments often suffer from low texture resolution. When the
viewer is very close to a surface, textures appear either blurry or blocky. It has
long been known that procedural textures are a solution to this problem. Tradi-
tionally, procedural textures could only be used for textures like wood grain and
checkerboards that were easy for humans to synthesize algorithms for. Evolver is
important for this problem because it is a method for taking an arbitrary image
texture and making a procedural texture from it.

Note that Evolver will add texture at higher frequencies than appear in the
original image. This is only mathematically possible because it may add the
wrong information; it is not sampling the original scene at a higher frequency
but trying to simulate what the results of that process would be. Because Evolver
uses natural images as part of its input data set, it is predisposed to creating
detail that has the same statistical properties as that found in real images. If
Evolver matches a stock leaf texture to a forest, it is likely that zooming in
will show individual leaves and not blocks. Of course, it is also possible that
from a distance carpet and leaves look the same and on zooming in the viewer
will discover that Evolver carpeted the forest instead. The user can control this
process by picking an appropriate set of primitive images.

5 Other Related Work

There is a long history of procedural graphics languages. Papert’s LOGO lan-
guage [15], Henderson’s Picture Language [9], Knuth’s TEXand Metafont [11]
are some early and familiar examples. Programmable shading languages like
Renderman [8, 16] continue to play an important role in graphics.

Perlin, and Worley independently worked on many procedural texturing al-
gorithms which are summarized in their book [5]. This work all assumes a human
writes the code manually, which is prohibitively difficult for complicated textures
such as actual photographs.

Barnsley [1] introduced the idea of iterated function systems (“fractals”) for
compression. These are much richer graphics languages than JPEG or GIF but
less general than Evolver, which does not rely on self-similarity for compression.

Massalin’s superoptimizer [12] tries all sequences of assembly language in-
structions to find the smallest one equivalent to a given input function. That is,
the superoptimizer conducts a comprehensive search of the state space of pro-
grams. It therefore clearly represents an extreme instance of optimization. While
the superoptimizer finds a globally optimal solution, it is clearly infeasible in the
large space that Evolver searches.

Nicholas et al. [13] have studied the problem of typed genetic programming
to improve the convergence speed of genetic programs. These works are not
immediately applicable to ours, because they consider much weaker languages
whose type domains we cannot adopt. We believe it is important to use a typed
language in Evolver, and intend to do this as future work.

Beretta, et al. [2] describe a technique for compressing images using genetic
algorithms. Nordin, et al. [14] describes a similar program for images and sound.
Both of these systems use primitive languages (at the machine instruction level)
and operate on 8x8 or 16x16 blocks. We build on their results by using genetic
algorithms for compression and the observation that dividing the image into
separate regions speeds convergence. Evolver differs in that it uses an image
segmentation based on objects, not arbitrary blocks, and features a rich image
processing language. Our approach avoids the blocky artifacts from these systems
and allows Evolver to capture details in a multi-resolution fashion. It also gives
Evolver the potential for much higher compression ratios, since 8x8 blocks can
achieve at most a factor of 64:1 compression.

Our work is directly inspired by Karl Sims [17], who used genetic algorithms
to evolve images on a connection machine with a high level language. In his
experiments, the fitness function was the user’s aesthetic preference, and the
human and computer interacted to form visually pleasing abstract images. We
use a language and genetic algorithm similar to Sims but apply it to image
compression to synthesize programs that create actual photographs.

6 Conclusions and Future Work

We have presented the Evolver framework, a collection of tools for compressing
graphical images. At its heart, Evolver consists of a simple, functional graphics

description language, and its corresponding interpreter, which resides on client
computers. Given an image to compress, Evolver breeds a description that gen-
erates an image that the designer considers acceptably close to the source image.
This program is generated once on the server, and used many times on numerous
clients.

Because the image is rendered by a program, Evolver offers many benefits not
found in traditional formats and compressors. Image descriptions are resolution-
independent, so the same description can render both a thumbnail image and the
actual one, with graceful degradation. The genetic algorithms reward patience:
by running longer, they can produce better approximations to the original im-
age, or find smaller programs that generate acceptable approximations. The
resulting image description can be extremely small, and can be replaced with
smaller descriptions as they become available. Different genetic algorithms are
better-suited to different kinds of images, so as Evolver encounters new families
of images, it simply needs new mating techniques; since the output is still a ren-
dering program in the same language, the client does not need to make changes.
Even if the language does grow, an enriched interpreter would still handle any
older images.

So far, we have only discussed the use of Evolver to compress static images.
We are also conducting experiments on compressing animations. On the one
hand, animations appear to offer a considerable challenge. It can be fairly time-
consuming to generate a description of even a single static image; how much
longer would it take to generate a small program that generates a sequence of
images? Indeed, this problem seems practically intractable.

There are, in fact, several feasible ways of approaching animations. One ob-
vious approach is to treat each frame individually, apply Evolver to each frame
in turn, and add a single instruction to its language to encapsulate a sequence
of frames. We can improve the convergence by exploiting temporal locality by
using the description for one frame as the initial description for the next.

In the ideal case, Evolver will incorporate a second language, dedicated to
animations. This second language would capture attributes such as a consistent
darkening of all pixels in a region (perhaps indicating nightfall). This again ex-
ploits the programmatic principle that a large difference in bit-wise information
may be captured by a small set of instructions. Various MPEG encoding stan-
dards use “difference” data of this sort, which we hope to exploit for designing
the animation language.

More importantly, we see Evolver pointing to numerous research opportu-
nities for the programming languages community. First, the genetic algorithms
in Evolver need a type system to guide the generation of programs; currently,
Evolver uses fairly ad hoc techniques to prevent the generation of invalid pro-
grams. Second, there are likely to be several static analyses that, with small
extensions to the intermediate language, will encourage “suitable” programs (at
the expense of some diversity), yielding quicker convergence. Third, Evolver may
be able to benefit from some of the features of existing graphical languages, such
as FRAN [6]; we were forced to use Java because Haskell currently lacks the rich

graphics library and widespread applet support necessary to deploy Evolver, but
the language’s design in no way precludes, and indeed encourages, implementa-
tion in a functional language. Finally, Evolver points to a new criterion for the
design of some domain-specific languages: to be suitable for creation of programs
by other programs, especially through a simple but highly iterative process such
as evolution.

Ultimately, our goal is not to develop radical new compression schemes—we
defer to others for whom that is a primary research interest. Instead, we believe
that Evolver’s true value lies in the philosophy that it embodies:

– Many problems in science and engineering are solved by changing represen-
tations. Programming languages are pervasive, and can therefore serve as a
useful alternate representation in many domains. Converting a domain’s data
into code makes it possible to leverage the techniques and tools of program-
ming languages—such as semantics-preserving program transformations and
interpreters, respectively—to tackle difficult problems.

– Leveraging steerable, probabilistic search techniques, such as genetic algo-
rithms, permits the selective injection of domain knowledge into optimization
problems.

– The burgeoning availability of cycles creates possibilities for whole new styles
of programs. These may employ, and can even exploit, non-standard notions
of “correctness”. In Evolver, for instance, the validity of an approximation is
determined entirely by the judgment of the designer’s visual sensory system.

We believe that this is an important design pattern that can be used to effectively
open a radical new approach to hard problems in several domains.

Acknowledgments

This work has been supported in part by the NSF Science and Technology
Center for Computer Graphics and Scientific Visualization, Adobe Systems,
Alias/Wavefront, Department of Energy, IBM, Intel, Microsoft, Sun Microsys-
tems, and TACO, and NSF Grant ESI 0010064. Nature photographs courtesy
of and copyright to Philip Greenspun (http://photo.net/philg/). Fish and
sunrise images courtesy of and copyright to Morgan McGuire. We thank Nick
Beaudrot for his help writing the toolkit.

References

1. M. F. Barnsley and A. E. Jacquin. Application of recurrent iterated function sys-
tems to images. In Proceedings SPIE Visual Communications and Image Processing
’88, volume 1001, pages 122–131, 1988.

2. M. Beretta and A. Tettamanzi. An evolutionary approach to fuzzy image com-
pression. In Proceedings of the Italian Workshop on Fuzzy Logic (WILF 95), pages
49–57, Naples, Italy, 1996. World Scientific.

3. World Wide Web Consortium. Scalable vector graphics (SVG) 1.0 specification,
2001. http://www.w3.org/TR/SVG/.

4. S. Demko, L. Hodges, and B. Naylor. Construction of fractal objects with iterated
function systems. In B. A. Barsky, editor, Computer Graphics (Proceedings of
ACM SIGGRAPH 85), volume 19 (3), pages 271–278, San Francisco, California,
July 1985.

5. D. Ebert, K. Musgrave, D. Peachey, K. Perlin, and S. Worley. Texturing and
Modeling: A Procedural Approach, second edition. AP Professional, 1998.

6. Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of
the ACM SIGPLAN International Conference on Functional Programming (ICFP
’97), volume 32(8), pages 263–273, 1997.

7. James Gosling, Bill Joy, and Guy Lewis Steele, Jr. The Java Language Specification.
Addison-Wesley, 1996.

8. Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.
In Computer Graphics (Proceedings of ACM SIGGRAPH 90), volume 24 (4), pages
289–298, Dallas, Texas, August 1990. ISBN 0-201-50933-4.

9. Peter Henderson. Functional geometry. In Symposium on Lisp and Functional
Programming, pages 179 – 187, New York, 1982. ACM Press.

10. Hau-Lai Ho and Wai-Kuen Cham. Attractor image coding using lapped partitioned
iterated function systems. In Proceedings ICASSP-97 (IEEE International Con-
ference on Acoustics, Speech and Signal Processing), volume 4, pages 2917–2920,
Munich, Germany, 1997.

11. D. Knuth. TEX and METAFONT : new directions in typesetting. Digital Press
and the American Mathematical Society, 1979.

12. H. Massalin. Superoptimizer: A look at the smallest program. In Proceedings of the
2nd International Conference on Architectural Support for Programming Languages
and Operating System (ASPLOS), volume 22, pages 122–127, New York, NY, 1987.
ACM Press.

13. Nicholas F. McPhee and Riccardo Poli. A schema theory analysis of the evolution of
size in genetic programming with linear representations. In Genetic Programming,
Proceedings of EuroGP 2001, LNCS, Milan, 2001. Springer-Verlag.

14. Peter Nordin and Wolfgang Banzhaf. Programmatic compression of images and
sound. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo,
editors, Genetic Programming 1996: Proceedings of the First Annual Conference,
pages 345–350, Stanford University, CA, USA, 28–31 July 1996. MIT Press.

15. S. A. Papert. Teaching children thinking. Technical Report A. I. MEMO 247 and
Logo Memo 2, AI Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 1971.

16. Pixar. The renderman interface, version 3.1, 1989.
http://www.pixar.com/renderman/developers corner/rispec/.

17. K. Sims. Interactive evolution of equations for procedural models. In Proceedings
of IMAGINA conference, Monte Carlo, January 29-31, 1992, 1992.

18. Gregory K. Wallace. The JPEG still picture compression standard. Communica-
tions of the ACM, 34(4):30–44, 1991.

19. Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on Information Theory, IT-23(3):337–343, 1977.

