
A Balance of Power:
Expressive, Analyzable Controller Programming

Tim Nelson
Worcester Polytechnic Institute

tn@cs.wpi.edu

Arjun Guha
Cornell University

arjun@cs.cornell.edu
Daniel J. Dougherty

Worcester Polytechnic Institute
dd@cs.wpi.edu

Kathi Fisler
Worcester Polytechnic Institute

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University

sk@cs.brown.edu

ABSTRACT
Configuration languages for traditional network hardware
are often fairly limited and hence easy to analyze. Pro-
grammable controllers for software-defined networks are far
more flexible, but this flexibility results in more opportu-
nities for mis-configuration and greatly complicates analy-
ses. We propose a new network-programming paradigm that
strikes a balance between expressive power and analysis, pro-
viding a highly analyzable core language while allowing the
re-use of pre-existing code written in more complex produc-
tion languages.

As the first step we have created FlowLog, a declara-
tive language for programming SDN controllers. We show
that FlowLog is expressive enough to build some real con-
troller programs. It is also a finite-state language, and thus
amenable to many types of analysis, such as model-checking.
In this paper we present FlowLog, show examples of con-
troller programs, and discuss analyzing them.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management ; D.2.4 [Software Engi-
neering]: Software/Program Verification—Model checking ;
D.3 [Programming Languages]: Miscellaneous

General Terms
Design, Languages, Verification

Keywords
Software-Defined Networks; OpenFlow; Verification; Network-
Programming Languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

1. INTRODUCTION
Networking is now faced with a classic programming lan-

guage design tradeoff: that between analyzability and ex-
pressive power. In the rush to create languages for a new do-
main, expressive power often wins. This is natural: the first
task of a language is to express functionality. Thus, most
controller programs are currently written using libraries in
general-purpose (henceforth, “full”) programming languages
like Java and Python. Even tailor-made SDN languages
(e.g., Frenetic [5] and NetCore [15]) are embedded in full pro-
gramming languages to support dynamic policies and state.
(We discuss other related work later.)

Because of the power of these languages, analysis of con-
troller programs is non-trivial. In languages with concur-
rency and state it can be extremely difficult to form useful
static summaries of program behavior. Add features like
eval and dynamic loading, and it can be hard or impossible
to determine what the program’s full code even is. As a re-
sult, analyses are either dynamic or use unsound techniques
such as symbolic evaluation. Because the controller pro-
grams represent infinite-state systems, papers do not even
bother mentioning the lack of completeness; any form of re-
liable static analysis is heavily compromised and tools can
usually only offer a “best effort” outcome. Approaches like
directly analyzing static forwarding tables [2] cannot avail of
the rich semantic knowledge contained in the original con-
troller program. These analyses may be sufficient in some
contexts but are not when reliability is a must. We there-
fore believe it is worth exploring other design strategies for
controller programming.

One natural alternative is to program controllers written
in languages with limited expressive power, e.g., finite-state
languages. This is attractive from an analytic standpoint,
but impractical. Controller authors sometimes need to take
advantage of the full power of programming, and method-
ologies that don’t provide it will (rightly) be deemed im-
practical.

The Middle Path.
We propose an alternative SDN programming experience

based on the following tenets:

• Controller authors should have the freedom to use both
restricted and full languages. Which one they use is
a function of the analytic power they need, previously
written code they wish to reuse, etc.



• A single controller program should be able to com-
bine elements from both restricted and full languages.
This provides the most flexibility and puts the trade-
off in the hands of the author. This division appears
in many SQL engines, wherein callouts to user-defined
functions play the role of the “full” language.

• Nevertheless, because of the difficulty of recovering
reasoning power once we permit full expressive power,
we prefer that the restricted language reside “outside”
and the “full” language play the role of callouts or li-
braries.

In short, we are aiming for the Alan Kay principle of “Easy
things should be easy, while hard things should be possible”.

From an analytic perspective, the restricted outer lan-
guage will be amenable to rich, sound, and complete analy-
ses. In this, we are not interested only in “verification”; for
many years we have worked on other rich analyses such as
change-impact [16], which let authors understand what im-
pact their edits will have to overall system behavior. Having
a restricted language also opens the door to sophisticated
forms of synthesis and much else.

But what to make of the embedded full-language com-
ponents? Our view is that performing the analysis over the
restricted language will enable us to automatically infer con-
straints, such as preconditions, postconditions, and invari-
ants, on the behavior of the full language components being
invoked. Discharging those constraints becomes a language-
specific, task-specific problem: solutions may range from us-
ing existing tools for controller languages (such as NICE [3]
for Python) to applying richer model-checking techniques to
performing dynamic monitoring of invariants.

In this paper we take the first step towards this vision,
which is to present FlowLog (section 3), a candidate for the
restricted language. FlowLog allows for both reading and
writing controller state, provides a concise idiom for stating
forwarding policies, and allows for the automatic inference
of when packets must be sent to the controller (section 5).
Perhaps surprisingly, FlowLog will be finite-state; it can thus
be model-checked efficiently (section 4). The more useful
test will be whether we can write any interesting controller
programs at all in this language; we show that FlowLog alone
can express useful controller programs (section 2). When we
hit expressive limits, however, our goal is not to keep growing
this language—down that path lies sendmail.cf and other
sulphurous designs—but to call out to full-language code.

2. FLOWLOG BY EXAMPLE
We introduce FlowLog through a pair of examples.

2.1 MAC Learning
We begin with a controller that learns which physical

ports have connectivity to which layer-2 (MAC ) addresses.
It also provides forwarding instructions to the switches that
take this learning into account.

As the name suggests, FlowLog is inspired by Datalog [1].
FlowLog programs consist of a set of rules, each of which has
a head and a body separated by the implication←. Each rule
describes one of two things: a modification of the controller’s
internal state (e.g., the rules with +learned and −learned in
their head) or a packet-handling action (the rules with emit
in the head). When the conditions in the body are met, the
action specified in the head is performed.

+learned(pkt, sw, pt, mac) ←
pkt.locSw == sw,
pkt.dlSrc == mac,
pkt.locPt == pt;

5 emit(pkt, newp) ←
learned(pkt.locSw,newp.locPt,pkt.dlDst),
pkt.locSw == newp.locSw,
pkt.header == newp.header;

emit(pkt, newp) ←
10 not learned(pkt.locSw, any, pkt.dlDst),

pkt.locSw == newp.locSw,
newp.locPt != pkt.locPt,
pkt.header == newp.header;

− learned(pkt, sw, pt, mac) ←
15 pkt.locSw == sw,

pkt.dlSrc == mac,
pkt.locPt != pt;

Listing 1: MAC Learning in FlowLog

The first rule tells the controller when to learn a port-
to-address mapping. The rule’s head (line 1) instructs the
controller that when it receives a packet pkt, it should add
any tuples <sw, pt, mac> that satisfy the rule body to its
learned relation. The body simply ensures that the tu-
ple’s contents represent the packet’s location switch (line 2),
source MAC address (line 3), and arrival port (line 4).

The second rule, beginning on line 5, handles forward-
ing when the controller has learned an appropriate port. It
informs the controller that when a packet pkt is received,
all new packets newp that match the rule body should be
sent. That is, the new packet must be sent out the port dic-
tated by the learned relation (line 6), on the same switch
as received it (line 7). All other attributes of the packet are
left unmodified (line 8). This last stipulation is necessary
because FlowLog will cause all packets that match the con-
ditions in the rule body to be produced. This behavior is
extremely useful for flooding packets on multiple ports (e.g.,
in the next rule).

The third rule, beginning on line 9, handles the other for-
warding case: when the controller has not yet learned an
appropriate port to send a packet on. Barring two differ-
ences, it is identical to the second rule: the negative use of
the learned relation on line 10 enforces that, for the rule to
fire, no appropriate port has been learned. Line 12 adds a
condition on the output port that ensures that the switch
will not backflow traffic.

Finally, the rule beginning on line 14 allows the controller
to account for mobility of hosts by removing outdated port-
to-address mappings.

2.2 ARP Cache
Our second example involves the controller acting as a

cache for address-resolution protocol responses. ARP al-
lows hosts to discover which datalink-layer (MAC) addresses
are currently bound to a specific network-layer (IP) address.
The program must, therefore, do several things: allow the
dissemination of ARP requests across the network, spy on
the replies to those requests in order to update its inter-
nal state, intercept requests for which the reply is already
known, and spawn reply packets for known requests. Ex-
cluding the un-learning of outdated ARP assignments, the
entire program is given below:



+learned(pkt, ip, mac) ←
pkt.dlTyp == 0x0806,
pkt.nwProto == 2,
not learned(pkt.nwSrc, any),

5 ip == pkt.nwSrc,
mac == pkt.dlSrc;

emit(pkt, newpkt) ←
pkt.dlTyp == 0x0806,
(pkt.nwProto == 2 ||

10 (pkt.nwProto == 1 &&
not learned(pkt.nwSrc, any))),

newpkt.locSw == pkt.locSw,
newpkt.locPt != pkt.locPt,
newpkt.header == pkt.header;

15 emit(pkt, newpkt) ←
pkt.dlTyp == 0x0806,
pkt.nwProto == 1,
newpkt.dlTyp == 0x0806,
newpkt.nwProto == 2,

20 learned(pkt.nwDst, newpkt.dlSrc),
newpkt.loc == pkt.loc,
newpkt.nwDst == pkt.nwSrc,
newpkt.dlDst == pkt.dlSrc,
newpkt.nwSrc == pkt.nwDst,

25 newpkt.otherwise == pkt.otherwise;

Listing 2: ARP Cache in FlowLog

In this program, pkt.dlTyp == 0x0806 checks that the
packet is an ARP packet, for which pkt.nwProto == 1 de-
notes a request and pkt.nwProto == 2 a reply.

The first rule updates the controller’s state when the net-
work sees an ARP reply for a previously-unknown IP ad-
dress. The negated condition on line 4 encodes that the IP
is indeed not in the current state.

The first emit rule, beginning on line 7, allows the prop-
agation of all ARP replies as well as ARP requests for un-
known IP addresses. Line 9 floods reply packets, and line
10 stipulates that the IP address must unknown to apply
to request packets. Line 13 prevents backflow, and line 14
explicitly preserves the packet header.

The second emit rule (starting line 15) spawns reply pack-
ets for IP addresses that the controller knows. The gener-
ated packet newpkt is constrained to be an ARP reply (line
18), while the originating packet must be an ARP request
(line 16). Its source MAC address is obtained from the con-
troller’s state (line 20). The reply is sent from the same
switch and port that observed the request (line 21) but with
the packet’s destination and source addresses reversed (lines
22–24). All other header fields are preserved in the new
packet (line 25). As before, omitting this restriction would
cause FlowLog to produce packets to cover all possibilities.

3. FLOWLOG UNDER THE HOOD
These examples show that FlowLog offers a concise means

for describing how a controller ought to react to packets. It
can govern how those packets are forwarded, cause entirely
new packets to be produced and sent, and modify the con-
troller’s internal state, by both adding and removing infor-
mation.

FlowLog programs have a relational notion of state, which
the program can both read and update. A relational state
is simply a collection of concrete tables (equivalent to a re-
lational database). For example, in our ARP-cache imple-
mentation, the controller’s knowledge of which ip addresses

are mapped to which ethernet addresses is contained in the
learned relation.

FlowLog syntax is inspired by Datalog [1] with negation,
to which we have added a notion of packet fields and slight
syntactic sugar. Furthermore, we require that there be no
cyclic dependencies between relation names across programs,
i.e., FlowLog is non-recursive.

FlowLog Semantics.
Let P be a FlowLog program, and let sig(P ) denote the

state relations used in P . If rules exist to define them, it
is natural to consider also the following generated relations,
which have special meaning in FlowLog:

1. emit, a special binary relation;

2. +R, where R ∈ sig(P ) and arity(+R) = arity(R) + 1;

3. -R, where R ∈ sig(P ) and arity(-R) = arity(R) + 1

Together, these relations define the semantics of P . Each
+R and -R relation is effectively a function in relation form,
mapping incoming packets to sets of tuples to add or re-
move from R in the post-state. Likewise, the emit rela-
tion produces sets of output packets. The arity increase
is what makes this functional behavior possible—by adding
a field for the incoming packet. Given a relational state
S for sig(P ) (i.e., a set of tuples for each state relation),
the meaning of P at S is a function that accepts individual
packets and produces two things: the next relational state
S′ and a set of packets to output on the network.

Let S+ be the interpretation of the emit, +R, and -R re-
lations given by Datalog semantics [1]. We denote the re-
lation R in a state S by RS , and tuple-sets resulting from

incoming packet pkt by subscripting. E.g. +RS
+

pkt is the set
of tuples to be added to R when pkt arrives while the con-
troller is in state S. Now the semantics of P is the function
[[P ]](S, pkt) = (S′, p′) such that:

1. For each R ∈ sig(P ): RS
′

= (RS \ -RS
+

pkt) ∪ +RS
+

pkt

2. p′ = {pkt′ | 〈pkt, pkt′〉 ∈ emitS
+

}

4. ANALYZING FLOWLOG
A FlowLog program naturally defines a finite-state trans-

ducer1 on controller states. This is easy to see from our
operational semantics: each transducer state is a set of rela-
tions, and each transition has arriving packets as input and
the resulting output packets as output. Due to this fact,
many rich analyses of FlowLog programs are not only pos-
sible [10], but even efficient. These include change-impact
analysis [16], verification, bug-finding, and more; the key
is that, regardless of the questions asked or the tools used,
FlowLog’s simple structure and carefully chosen restrictions
ease analysis in general.

As an illustrative example, we describe the application of
model-checking below. Model-checking is a sound and com-
plete exploration of a finite state-space. For our experiments
we used the SPIN model checker [9]. First we discuss the
properties to verify, then examine performance.

1A finite-state automaton that reads and writes a symbol
at each step.



Verification Properties.
We begin by considering MAC-learning. Properties one

might want to verify include:

Consistency of State All switch-address pairs are
mapped to at most one port.

Preservation of Connectivity If a packet appears at an
endpoint, it will eventually exit the network at the
appropriate point.

No Loops The algorithm never induces routing loops.

Eventually Never Flood The algorithm will eventually
stop flooding.

The“Eventually Never Flood”property is especially inter-
esting. Though it is a behavioral property, it is also equiv-
alent to saying that the second emit rule (listing 1, line 9)
will always eventually stop firing. In our experience analyz-
ing rule-based languages, we often find it easier to ascribe
semantic properties to a small number of syntactic rules,
making it easier to understand and debug programs.

ARP-cache shares some properties with MAC-learning and
differs on others. The ARP-cache properties we considered
are:

Consistency of State One IP address must not map to
multiple MAC addresses.

Reliability All ARP requests will be answered.

Cache All ARP requests for known addresses will be stopped
and replied to, without propagation in the network.

We have verified each of these properties, as well as caught
errors that were artificially injected. Checking against in-
jected errors is important even when a system passes, be-
cause all system descriptions—even incorrect ones—will pass
(erroneous) vacuously true property statements. Also, it is
important to distinguish the times for verification and falsi-
fication, since these can be quite different.

Performance of Analysis.
To evaluate the performance of our analyses, we use met-

rics and network topologies (two to three switches) similar
to those of Canini et al. [3]. We note that our rough use of
out-of-the-box model-checking tools sees performance sim-
ilar to theirs, which used a custom-built checker. This is
because the restricted nature of FlowLog allows for fairly
simple modeling. All tests are run on an Intel Core i5-
2400 CPU with 8 GB of memory, running Windows 8 64-bit.
We use Spin version 6.2.3, and make the modeling assump-
tion that packets are injected into the network serially. For
MAC-learning, we allow host mobility, limiting the num-
ber of times hosts can relocate to three. We test all MAC-
learning properties on two different network topologies: an
acyclic topology with two switches and a cyclic topology
with three switches. For ARP-cache, we test without allow-
ing host mobility on a two-switch topology.

Spin verifies Consistency of State, Reliability and
Cache in under 20 seconds each, using no more than 500
MB of memory. Preservation of Connectivity fails in
the presence of host-mobility, and Spin yields an example of
this on the 2-switch topology in 140 milliseconds. No Loops
is correct on the acyclic topology, but Spin finds potential
routing loops on the cyclic topology in 40 milliseconds.

Eventually Never Flood fails on both topologies. Spin
returns a short illustration of this failure in 160 milliseconds.
The property fails for a somewhat subtle reason: address-
port mappings are only learned locally. Thus, packets from
an unlearned source address to a previously learned desti-
nation will not be flooded, preventing other switches from
learning the right port for that address. This oversight can
be fixed with a single FlowLog rule (not shown in the listing)
that floods the first (and only the first) packet seen from an
unknown source, even if its destination is known.

5. EXECUTING FLOWLOG PROGRAMS
Since FlowLog is a refinement of Datalog, a first option

for execution would be using an out-of-the-box Datalog en-
gine. Given a specific packet, running such an engine would
certainly yield the set of packets that ought to be emitted,
as well as any necessary state edits. However, notifying the
controller of every packet arrival places unnecessary over-
head on both the network and the controller hardware. A
real-world controller must provide flow rules proactively to
the switches, and only be informed when a packet arrival
might cause the controller’s state to be updated or cause
behavior that the switch perform do on its own.

Fortunately, there is a way to accomplish this with FlowLog.
The NetCore [15] controller provides a runtime environment
and a verified compiler [6] from programmatically generated
policies to OpenFlow switch tables. The compiler allows
controllers to issue rules proactively, making use of wild-
carding. We therefore intend to execute FlowLog programs
within NetCore, using its verified compiler whenever possi-
ble.

FlowLog programs are, however, not just NetCore poli-
cies! Instead, FlowLog programs are richer in three ways:
they can access controller state, they can modify that same
state, and they can make non-constant modifications to packet
fields. NetCore policies are stateless, and moreover their
ability to modify packet fields is restricted by the nature
of OpenFlow 1.0. For instance, a flow table cannot express
“swap the source and destination addresses”. Thus some
pieces of a FlowLog program will not be expressible in a
NetCore policy.

To circumvent this problem, we divide a FlowLog pro-
gram in two: rules which are simple enough to be (modulo
the current controller state) compiled to flow tables, and
rules which will require direct controller action in some way.
Here we find another advantage of our non-recursive, rule-
based design: it is easy to characterize the packets that the
controller may need to take direct action on. These packets
are the ones that can be matched by the bodies of state-
modification rules or rules that modify packets in a non-
constant fashion. The controller can process these excep-
tional packets using either a Datalog engine or custom algo-
rithms. By proactively compiling as much of the program
as possible to flow tables, we reduce overhead; furthermore,
we can statically determine when the overhead will occur,
making it easier to tune for performance if the cost of updat-
ing switches is found to be expensive. As an added benefit,
automatic computation of controller-notifications eliminates
the potential for bugs (and inefficiency) in controller notifi-
cation.



6. RELATED WORK
There have been many Datalog-derived and -related pro-

gramming languages, especially in the SDN domain. Hin-
richs, et al. [8] present the FML language for network man-
agement, which, like FlowLog, is based on non-recursive
Datalog with negation. FML programs have far more ex-
pressivity in their rule conditions than do FlowLog pro-
grams, yet they do not provide a way for the program to
modify state.

The Declarative networking effort [13] uses declarative
languages to program distributed systems, focusing on tem-
poral reasoning and message-passing between network nodes,
rather than programming for a centralized controller. While
these languages are designed to encourage code correctness,
analysis has not been a goal equal to expressive power in
their design.

Katta et al. [11] describe a language called Flog which has
a similar appearance to ours. Flog does not give the ability
to explicitly remove tuples in the next state (as we do with -R

rules). Instead, Flog’s next state is empty unless tuples are
explicitly carried over. In terms of expressive power, Flog
allows recursion in its rules, but not explicit negation; we
allow the opposite. Flog’s forwarding policies allow implicit
negation via rule-overriding, as in their example implemen-
tation of MAC learning. Unsurprisingly, the inclusion of re-
cursion gives Flog a significant advantage in expressiveness
over FlowLog. However, Flog is not designed with analysis
in mind; both are equal considerations in FlowLog.

Field et al. [4] present a declarative language model, de-
signed for web applications, that allows a database to react
to external updates. Like FlowLog, their language is in-
spired by Datalog, but it has significantly more expressive
power than FlowLog. It supports recursion, provides nu-
merics, and offers features designed for interaction between
processes. Thus, one could view their language as a pos-
sible evolution of FlowLog, were we only concerned with
expressive power and usability, and not with analysis or the
embedding of third-party code. They do not discuss anal-
ysis, and the addition of recursion renders some analysis
questions undecidable.

Voellmy et al. [19] present Procera, a functional-reactive
policy language for SDNs. Procera allows the reactive mod-
ification of state as well as packet filtering. It is more ex-
pressive than FlowLog, for instance allowing arithmetic, but
does not address analysis.

Skowyra et al. [18] compile their rapid-prototyping lan-
guage to model-checkers in order to verify properties and
find bugs in specifications. Their language (VML) is de-
signed for prototyping and not execution, although it is
widely applicable outside SDNs. Like us, they use MAC
learning as a testbed.

NICE [3] uses a mix of symbolic execution and model-
checking to find bugs in NOX controllers written in Python.
However, since Python is a full language, symbolic execution
is unsound and required implementing a specialized model-
checker. We propose a language-design strategy that will in-
crease the available efficiency and soundness of analysis via a
finite-state surface language, while still embracing tools like
NICE for analysis of arbitrary call-outs, thereby ringfencing
the regions of the controller program that may need to rely
on unsound methods.

FlowChecker [2] analyzes low-level OpenFlow flow tables.
switches. In contrast, FlowLog is an efficiently analyzable

language for controller programming, and thus operates at
a different level of abstraction. Similarly, Anteater [14] uses
SAT-solving techniques to analyze the switch forwarding
rules on a network. Likewise, Gutz et al. [7] perform analy-
sis of stateless controller policies when analyzing their slice
abstractions. In contrast, analysis of FlowLog must take
shifting controller state into account, rather than assum-
ing a fixed switch forwarding base. Guha et al. [6] recently
developed a machine-verified controller for NetCore that en-
sures that static NetCore policies are correctly translated to
OpenFlow messages. In contrast, our work addresses the
verification of dynamic control programs.

Other analysis tools such as FortNOX [17] and Veriflow [12]
act only at runtime; we have focused on designing a language
for efficient static analysis as well.

7. NEXT STEPS
We have focused so far on the design of a decidable yet

expressive language. Because our design is based on per-
mitting external code in full languages, our current work
advances on two fronts:

1. Automatically extracting interfaces on callouts. We
can exploit the long history of work on interface gen-
eration in the verification community, though the na-
ture of composition here—being sequential rather than
parallel—has been studied less.

2. Focusing on tasks other than traditional verification.
Our primary emphasis will be change-impact analy-
sis, but we are also interested in program synthesis
approaches.

Our goal is to produce a tractable, expressive, analysis-
friendly language that enables rich reasoning to create re-
liable controllers.

Acknowledgments.
We thank Andrew Ferguson, Vyas Sekar and Seyed Fayazbakhsh

for feedback on drafts of this paper. We are grateful for sup-
port from the US NSF and Google.

8. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] E. Al-Shaer and S. Al-Haj. FlowChecker:
Configuration analysis and verification of federated
OpenFlow infrastructures. In Workshop on Assurable
and Usable Security Configuration, 2010.

[3] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and
J. Rexford. A NICE way to test OpenFlow
applications. In Networked Systems Design and
Implementation, 2012.

[4] J. Field, M.-C. Marinescu, and C. Stefansen. Reactors:
A data-oriented synchronous/asynchronous
programming model for distributed applications.
Theoretical Computer Science, 2009.

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A
network programming language. In International
Conference on Functional Programming (ICFP), 2011.



[6] A. Guha, M. Reitblatt, and N. Foster.
Machine-verified network controllers. In Programming
Language Design and Implementation (PLDI), 2013.

[7] S. Gutz, A. Story, C. Schlesinger, and N. Foster.
Splendid isolation: A slice abstraction for
software-defined networks. In Workshop on Hot Topics
in Software Defined Networking, 2012.

[8] T. Hinrichs, N. Gude, M. Casado, J. Mitchell, and
S. Shenker. Practical declarative network
management. In Workshop: Research on Enterprise
Networking (WREN), 2009.

[9] G. J. Holzmann. The Spin Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[10] J. E. Hopcroft and J. D. Ullman. Introduction to
Automata Theory, Languages, and Computation.
Addison-Wesley, Reading, Massachusetts, 1979.

[11] N. P. Katta, J. Rexford, and D. Walker. Logic
programming for software-defined networks. In
Workshop on Cross-Model Design and Validation
(XLDI), 2012.

[12] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invariants
in real time. In Networked Systems Design and
Implementation, April 2013.

[13] B. T. Loo, T. Condie, M. N. Garofalakis, D. E. Gay,

J. M. Hellerstein, P. Maniatis, R. Ramakrishnan,
T. Roscoe, and I. Stoica. Declarative networking.
Communications of the ACM, 52(11):87–95, 2009.

[14] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In SIGCOMM, 2011.

[15] C. Monsanto, N. Foster, R. Harrison, and D. Walker.
A compiler and run-time system for network
programming languages. In Principles of Programming
Languages (POPL), 2012.

[16] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and
S. Krishnamurthi. The Margrave tool for firewall
analysis. In USENIX Large Installation System
Administration Conference, 2010.

[17] P. Porras, S. Shin, V. Yegneswaran, M. Fong,
M. Tyson, and G. Gu. A security enforcement kernel
for openflow networks. In Workshop on Hot Topics in
Software Defined Networking, 2012.

[18] R. Skowyra, A. Lapets, A. Bestavros, and A. Kfoury.
Verifiably-safe software-defined networks for CPS. In
High Confidence Networked Systems (HiCons), 2013.

[19] A. Voellmy, H. Kim, and N. Feamster. Procera: A
language for high-level reactive network control. In
Workshop on Hot Topics in Software Defined
Networking, 2012.


