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In teaching students to program with compositions of higher-order functions, we have encountered a sharp

distinction in the difficulty of problems as perceived by students. This distinction especially matters as growing

numbers of programmers learn about functional programming for data processing. We have made initial

progress on identifying this distinction, which appears counter-intuitive to some.We describe the phenomenon,

provide some preliminary evidence of the difference in difficulty, and suggest consequences for functional

programming pedagogy.
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1 AN EDUCATION PROBLEM

For a few years now, a colleague at our institution has been running an introductory computing
courseÐhenceforth dc, short for łdata centricžÐin which students begin with functional pro-
gramming (fp) over tables, following the philosophy of a recent CACM article on curriculum
design [Krishnamurthi and Fisler 2020]. Similarly, Author 2 has taught an łacceleratedž introduc-
tory course (henceforth ac), designed primarily for students with significant prior computing
experience. Both courses use higher-order functions (hofs), over tables and lists, respectively.
In 2021, Author 2 charged Author 1 with creating new problems for ac for students to solve

using only hofs. Creating problems to exercise a student’s ability to compose hofs proved to be a
more challenging task than expected; Author 1 struggled to propose reasonable problems, with
most appearing to be either too easy or too difficult. Worse, both authors struggled to articulate
characteristics that distinguished these classes of problems. We then found that there had been
similar struggles with problems in dc as well. However, nothing in the fp literature provided a hint
as to what that might be.
Ultimately, we conjectured that the nature of the problems might be a contributor. This paper

distills our experience as follows. It starts by presenting two patterns of composing hofs and asks
readers to answer some questions about them. It then presents both answers from experts and our
own views on these patterns. Next, it presents results from a preliminary experiment to investigate
these views. Finally, we discuss implications for curricular design in fp.
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2 PAPER CONTEXT

In this paper, we limit ourselves to hofs over lists, and permit only these functions:
map (A → B) * List<A> → List<B> transforms

andmap (A → Bool) * List<A> → Bool conjoins while mapping
ormap (A → Bool) * List<A> → Bool disjoins while mapping
sort (A * A → Bool) * List<A> → List<A> sorts by predicate

filter (A → Bool) * List<A> → List<A> filters by predicate
take-while (A → Bool) * List<A> → List<A> takes while predicate

Notably, we exclude the variants of fold. We discuss why in section 8.3.

3 A PUZZLE FOR THE READER

Before continuing, we ask the reader to stop and perform the following exercise.
Consider the following two structures of composing higher-order functions (łfunargž is short

for the functional parameter), where L is a list:

Type A HOF_A(<some funarg>, HOF_B(<some funarg>, L))

Type B HOF_C((\inner.HOF_D(<some funarg>, inner)), L)

(Ignore interleavings of these.)
Now answer the following questions:

(1) Which of these types would you consider łeasierž for students to understand and use?
(2) Howwould you rate their relative expressive power in terms of problems they can solve? That

is, how you would compare the set of problems that can be solved with the two structures?

Don’t skim over these; they’re central to the rest of the paper. Consider writing down your answers,
so you can match against what you read later.

Commit to your answer before you continue!

4 EXPERT TESTIMONY

We asked a few people at our institution with fp experience, and got consistent answers from them.
We then reached out to three well-known fp educators at three other (all different) institutions
and posed the same questions. We carefully chose a person each closely affiliated with (and who
has written a high-quality fp education book using) Haskell, OCaml, and Scheme, the venerable
forebears of today’s variety of languages. All three are also established researchers in their own
right. We got essentially the same answers from them as we obtained internally:

(1) Type A is probably much simpler than Type B. The exact reasons differed but were similar: B
potentially requires working with lambdas, while A corresponds to łpipelinež or a sequence
of loops (which many consider simpler, though this was expressed with some skepticism).

(2) We did not obtain clear-cut answers to this question, suggesting a lack of certainty.

We are certainly curious to hear whether our readers had similar conclusions.
For the rest of this paper we will adopt different terminology. We henceforth refer to Type A as a

pipeline composition, because it corresponds to HOF_B L | HOF_A (in Unix notation), and matches
common functional, Unix, data science, and other data processing pipelines. We will call Type B
structural, for reasons that will soon be clear.
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5 REASONING ABOUT THE PUZZLE

Let’s first consider the second question. To answer it, it helps to take the perspective of a type-driven
synthesis engine [Feser et al. 2015] searching for possible functions that can be used in a spot.

There is, in fact, a very narrow range of compositions that can be written in the structural style.
Observe that, for the introductory hofs we consider, inner must be an element of L; therefore, the
set of available hofs that can take the place of HOF_D must be those that operate on the type of L’s
content. Thus if L is itself a łflatž list, then there are no such functions in the novice’s vocabulary.
At this point the composition has to łbottom outž to use built-in, library, or custom functions, but
there is no need to search further in the (restricted) space of hofs.
This explains our choice of the terminology. In this style, at every level, a list-consuming hof

łpeels offž one level of structure; therefore, the set of possible łnextž functions can only be those
that can accommodate what is left of the structure. Thus, the type structure of the original (list)
input greatly limits the set of functions and the depth of nesting that is feasible.1

The pipeline form has no such restriction. The list input to HOF_A is not at all constrained in the
way the funarg is in structural composition. In fact, HOF_B can even produce output that is łdeeperž
than the type of L (e.g., when map consumes a list and produces a list-of-lists). This means the set
of possible functions that can go in each location is much larger, and many more combinations
have to be considered. Furthermore, the pipeline can be made arbitrarily long (as any experienced
Unix user knows), so without an a priori bound, the solution search can be unbounded.
In short, our intutions (but perhaps not yours!) seem to be wrong. However, this is an argument

based on anecdotal information and a proposed theory. But do students actually find structural
problems simpler than pipeline problems?

6 THE EXPERIMENT: STUDY DESIGN

To probe this issue experimentally, we conducted a study in ac (the course we had easiest access
to). This section describes the study; section 7 analyzes the responses.

6.1 How to Assess?

It would be natural to look at student performance in the above classes as an indicator of the difficulty
of these problems. However, this would almost certainly be misleading, for several reasons:

(1) At our institution (as at many others), students can drop a course after starting it (and perhaps
re-take it later). Thus, students who struggled most may not be represented in the data.

(2) At our institution, there are multiple pathways to the degree. Thus students can choose to
switch to a different course, again introducing a selection effect.

(3) Students can avail of help from tas, who are especially likely to be helpful early in the
semester. Looking at final performance does not reveal these interventions.

(4) Finally, when grades are at stake, some students may get illicit łhelpž from other students or
other sources. These too would be difficult to identify from final answers.

Some of these phenomena can be mitigated by, e.g., close surveillance. We expressly chose not to
follow this path because this can make students deeply uncomfortable and would hence adversely
affect their performance. It can have an especially negative effect on students who feel they do not
łbelongž in computer science, thereby hurting diversity.

1One caveat is that there can be łhiddenž levels of nesting. For instance, the original datum might be a list of strings, which

suggests only one level of nesting, butÐdepending on the languageÐa string either is or can be exploded into a list of

characters, resulting in another level of nesting.
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The Planning Alternative. What we would like to see, unintrusively, is student łthinkingž about
how they might structure a solution. In particular, we are curious to see what they think about
before producing a final artifact. To do this, we turned to the classic computing education field of
program planning.
Driven by cognitive science, planning was introduced in the mid-1980s [Johnson and Soloway

1984] as a more concrete, and cognitively-grounded, version of łprogram designž. Unfortunately,
early negative results [Ebrahimi 1994; Johnson and Soloway 1984] made progress difficult. In the
past decade, however, several papers [Achten 2021; Fisler et al. 2016; Simon 2013] have revived
this field, with some [Achten 2021; Fisler 2014; Fisler et al. 2016; Seppälä et al. 2015] showing a
particularly strong tie to thinking functionally and compositionally.
We therefore decided to ask students to present plans for a collection of problems, with a

particular emphasis on using hofs as the planning primitives. This framing is somewhat narrow,
but has the benefit of being very concrete, and also reinforcing a pedagogic context we cared about
(namely, making students build a vocabulary of functional operators, and get comfortable thinking
compositionally in terms of them).

6.2 Study Context

We conducted our study in ac. At the point where we conducted the study, all students had been
assigned to read the higher-order functions material in How to Design Programs [Felleisen et al.
2001] (htdp). They had also completed an assignment where they had to write several functions
using only hofs, with explicit recursion forbidden. Even lacking intrinsic motivation, the latter,
presumably, motivated students to complete the reading. They used the Advanced Student Language
level [Findler et al. 2002] of Racket [Flatt and PLT 2010]. Though the student levels are not statically
typed, they were required to read and write contracts-as-comments in the style of htdp.
The students were familiar with all the functions listed in section 2 with the exception of

take-while. The task gave them a definition and example of take-while. We intentionally added
this function for three reasons: (a) to enrich the set of problems, (b) to confirm [Krishnamurthi and
Fisler 2021]’s claim that students often have confusion between take-while and filter, and (c)
to see whether the inclusion of an unfamiliar operator would cause significant problems. (It didn’t!)
These students were also familiar with fold, even though we leave it out of this study.

6.3 Problem Description

Our study had seven programming problems. Each of these problems was intended to simulate the
kind of task that confronts many people in data processing: given a concrete input, they have a
sense of what kind of output they want at the end. The task is then to generalize this process into a
computation that can be applied to any dataset.
For each problem, we needed a way of presenting it to the students. We chose to not use a

verbal description because, despite several tries, we were unable to find formulations that did not
effectively give away the solution structure to lesser or greater extents. Verbal descriptions have the
additional detriment of being difficult to standardize, both for length and language complexity. For
any set of verbal descriptions, it could be argued that differences in the statement of the problems
is what tripped up a student, and not the essence of a set of problems. We sought to mitigate this
effect by selecting a more standardizable problem representation.
We therefore described each problem through three input-output pairs.2 Our examples use the

syntax of Lisp, but should be trivial to adapt to any language with list data structures.

2We do not claim this process of problem description is ideal. See section 8.2.
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Our work was done in a purely-functional setting: students were in the pure portion of htdp and
were required to program without side-effects, which was enforced by their language DrRacket
level (as noted in section 6.2). The work in this paper fundamentally depends on purity. In the
presence of state, a map or filter is no longer limited to working on each element independnetly
and can instead exhibit fold-like aspects, which would put it outside the scope of our study.

6.4 Problem Design and Solutions

All seven problems are shown in fig. 1. Three problems were designed to have a structural solution
(S1śS3). S1 composes map and filter, S2 composes map and take-while, and S3 filter and
andmap. Three (P1śP3) were designed for pipeline solutions. Their solutions use the same pairs
of hofs as S1śS3 respectively: e.g., P1 composes map and filter. Finally, one problem (I1) asked
them to duplicate the input list, which is impossible to do with the given operations. The intended
solutions are shown in fig. 2.

6.5 Response Task

Given the three examples, students were told, łYour job is to determine a way to combine higher-
order functions (HOFs) to produce all of the examples [. . . ]. For any HOF used, the function
parameter may be a built-in function or a custom lambda. The function parameter may also be a
lambda that invokes another HOF from the list above.ž Students were given 5 days to respond to
the set of questions with no limit on how many hours they spent.

In response to the question łHow would you combine the available higher-order functions to do
this?ž, students could answer one of

• I see how to produce these examples using a combination of higher-order functions (I See)
• I don’t think these examples are possible to produce using the given higher-order functions
(Not Poss)

• I don’t know (idk)

(The short codes in parentheses are how we will refer to these responses later in the paper.) Each
selection came with a corresponding follow-up question, which students were asked to answer
narratively in a text box. The follow-up questions were:

I See: How would you combine the available higher-order functions to do this?
Not Poss: Why do you think this is impossible?
idk: What do you find difficult about these examples?

6.6 Problem Order

Students were shown the problems in random order to minimize sequence, order, and carryover
effects [Salkind 2010]. However, students were always shown problem S1 first to start off with
what we hoped would be an easy problem (as it appears to have been). We especially wanted to
avoid I1 appearing firstÐwhich it could have if we had completely randomized the orderÐwhich
might have been rather confusing (and perhaps also off-putting). Showing S1 first avoids that.

7 THE EXPERIMENT: ANALYSIS

Now we study student responses to these questions.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 102. Publication date: August 2022.
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S1.

(list (list 6 0) (list 5 1) (list 9 2 5)) → (list (list 6 0) (list 1) (list 9 2))

(list (list 5) (list 4 5)) → (list empty (list 4))

(list (list 6 5 7) (list 6 0 5) (list 9 1) (list 5 5)) →

(list (list 6 7) (list 6 0) (list 9 1) empty)

S2.

(list (list "my" "account" "earns" "interest")

(list "her" "dad" "took" "interest" "in" "her" "work")

(list "i" "lost" "interest" "so" "i" "left")) →

(list (list "my" "account" "earns")

(list "her" "dad" "took")

(list "i" "lost"))

(list (list "the" "old" "park" "at" "the" "town" "center")

(list "park" "there" "and" "walk")) →

(list (list "the old") empty)

(list (list "can" "i" "play" "if" "i" "finish" "work")

(list "i" "am" "so" "excited")

(list "my" "class" "play" "is" "my" "next" "event")) →

(list (list "can" "i")

(list "i" "am" "so" "excited")

(list "my" "class"))

S3.

(list (list -6 1 2) (list 1 4) (list 2 6 9)) → (list (list 1 4) (list 2 6 9))

(list (list 7 -2 3 -5) (list -4 -1)) → empty

(list (list 8 5 0) (list -6) empty (list 9 1)) → (list (list 8 5 0) empty (list 9 1))

P1.

(list -40 212 32 0) → (list -40 100 0)

(list 32 0 212 32) → (list 0 100 0)

(list -40 -40 32 -40 0 212) → (list -40 -40 0 -40 100)

P2.

(list "red" "amber" "green" "blue" "brown") → (list 6 10 10)

(list "orange" "purple" "pink" "gray" "purple") → (list 12 12)

(list "teal" "periwinkle" "pink") → empty

P3.

(list -7 1 -4 -8 2) → #false

(list -3 8 -3 6 2 -5 4) → #true

(list -3 -6 -5) → #true

I1.

(list 1 5 -5) → (list 1 5 -5 1 5 -5)

(list 0) → (list 0 0)

empty → empty

Fig. 1. All problems (originally presented on multiple lines; spacing reduced to fit on page)
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S1.

(define (question1 outer-list)

(map (lambda (inner-list)

(filter (lambda (elem) (not (= elem 5)))

inner-list))

outer-list))

S2.

(define (question2 outer-list word)

(map (lambda (inner-list)

(take-while (lambda (elem) (not (equal? elem word)))

inner-list))

outer-list))

S3.

(define (question3 outer-list)

(filter (lambda (inner-list)

(andmap (lambda (elem) (> elem 0))

inner-list))

outer-list))

P1.

(define (f-to-c f) (* (- f 32) (/ 5 9)))

(define (question4 outer-list)

(map f-to-c

(filter (lambda (elem) (not (zero? elem)))

outer-list)))

P2.

(define (question5 outer-list)

(map (lambda (elem) (* 2 (string-length elem)))

(take-while (lambda (elem) (not (= (string-length elem) 4)))

outer-list)))

P3.

(define (question6-intended outer-list)

(andmap even?

(filter positive?

outer-list)))

(define (question6-alternate outer-list)

(ormap (lambda (elem) (= elem -3))

outer-list))

Fig. 2. Solutions
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7.1 Numeric Student Responses

Numerically, student answers were as follows:

Problem Type I See Not Poss IDK

S1 40 0 0
S2 36 1 3
S3 40 0 0

P1 28 8 4

P2 16 8 16

P3 30 2 8

I1 5 29 6

We can see significantly greater lack of certainty when it comes to the pipeline problems. The
impossible problem was included to serve as an łattention testž, and indeed only a small number of
students claimed to be able to solve it.

Of the pipeline problems, note that P3 seems qualitatively a little different from P1 and especially
from P2. P3 highlights a difficulty in the construction of pipeline problems: it is possible to create
problemswith simpler solutions than intended. In this case, while P3 had the intended compositional
solution andmap(even?, filter(positive?, L)), it can also be solved with just a single ormap
or andmap (e.g., (ormap (\x -> x == -3) L)). The textual responses (studied below) show that it
is these alternative solutions, not the recognition of the pipeline solution, that contributed to better
scores than the other two pipeline problems.

This failure in problem creation was unfortunate for our intended study, but in turn highlighted
how unforeseen challenges in problem creation can also impact intended classroom learning. We
return to other aspects of this issue in section 8.1.

7.2 Narrative Student Reponses

Of course, it is not enough to just look at the numeric results. We should also see why they chose
their answers; indeed, these prove to be instructive.

S1. 37 students provided seemingly correct answers. Two missed an explicit map, and one an
explicit filter.

S2. Of the 36 I See answers, 31 had seemingly correct compositions. Three weremissing an explicit
map. Only twowere incorrect, using filter instead of take-while. It is worth noting that confusion
between filter and take-while has been noticed by other researchers too [Krishnamurthi and
Fisler 2021], but to much greater degrees than we see.

The one Not Poss inferred a much richer problemÐthat elements were kept so long as they were
not found in later sub-listsÐthereby effectively requiring a fold, which had not been provided
(though they used the phrase łtaken whilež).

Of the three idk students, all three were on the right track; two indicated map+take-while but
inferred a harder problem, while the third focused on map+filter (recalling an earlier homework
problem) and could not see how to solve it.

S3. 31 had seemingly correct compositions with filter and andmap or ormap. Four were missing
an explicit andmap or ormap. Five were incorrect: three had an extra outer map, one assumed map

can behave like fold, and one used take-while instead of filter.

Structural Summary. In short, on the structural problems, the vast majority of students did either
well enough or perfectly, and there were very few errors and only for some problems. That is, they
chose the right answer with the correct reasoning.
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P1. Only 28 students chose I See. Of these, 22 are seemingly correct, three are incorrect, and the
others are ambiguous. The responses included entries like:

• łWhew! This one took a while to figure out. It’s a three step process(at least the way I do it)ž.
Their first step is a map that converts 32s to 0s and 212s to 100s. Their second is a foldr (not
on our list) to delete zeroes to the right of a 100. Their third is a foldr to eliminate zeroes
to the immediate left of another 0. They explain the use of foldr and provide a detailed
example.

• A map łwith a unique function that utilizes filter to eliminate repeat resultsž.
• łI believe this should be take-while and map, with a helper included in mapž

and so on. The Not Poss answers included responses like łandmap and ormap return booleans; map

returns the same length; the other three HOFs can’t add new elementsž and łIt’s both altering and

filtering the elements from the listž. The idk responses made clear that they could not find a pattern.

P2. Only 16 students chose I See. Of these, 10 were seemingly correct, one missed an explicit
take-while, while five were incorrect. Students in Not Poss had similar answers as for P1 (includ-
ing some identical quotes), along with claims that they could not see a pattern. The idk responses
again said they could not see the pattern.

P3. Of the 30 I See responses, 27 saw the simpler pattern previously mentioned (a single andmap
or ormap), two had seemingly correct compositions, and one was incorrect. One of the Not Poss

made a type-and-value argument, while the other (correctly) assumed an overly simple pattern and
argued it did not require hofs. The idk responses again did not find the pattern, except one who
may have but said łIt’s either andmap or ormap, but I don’t know how to determine which is being

used herež.

Pipeline Summary. In short, even the łcorrectž answers for P1śP3 included incorrect reasons.
Lacking an intermediate step, there was considerable difficulty determining how the input had
been transformed into the output. We feel safe in concluding that this set of problems, for these
students, truly was harder.

I1. Three of the I See answers were not decipherable to the authors. One explicitly assumed a
łduplicatež function. Finally, one described (without using the name, but referencing łaccumulatorž)
a fold-style function. The Not Poss arguments all provided an argument in terms of the size and
type properties (which we discuss more in section 10.3). The idk answers were essentially the same.

8 DISCUSSION

The preceding analysis will likely inspire certain questions or challenges from the reader, which
we try to anticipate here.

8.1 Are These Just TrickQuestions?

We see that there seems to be considerably more confusion and ambiguity with the pipeline
problems. A reader’s first reaction might be to think that the whole setup is unfair: the pipeline
problems might seem to be łtrick questionsž and coming up with a solution is therefore really a
question of whether the reader sees the trick. In response, we offer two arguments.
First, and returning to the phenomena in section 1, they did not appear that way to Author 2

when constructing the problemÐbecause he already knew the solution. We argue, from personal
experience that we have not yet tried to scientifically evaluate, that knowing the solution structure
can create a giant blind spot that obscures the difficulty of problems.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 102. Publication date: August 2022.
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Second, we don’t even disagree with this characterization; indeed, it is part of our point! Structural
problems are deeply constrained. The same pairs of functions, in the pipeline case, lead to vastly
many more options, making it tricky for students to see what compositions might get them to
a solution. Put differently, the student-as-synthesizer has a much bigger space to traverse. In
particular, it’s important to remember that the same students who are able to solve structural
problemsÐoften by describing clear scaffolding aids in their responsesÐstruggle to do so in the
pipeline cases.

Despite these issues, pipeline problems cannot simply be skirted, especially as they may represent
many common data processing tasks. We therefore discuss pedagogy in section 10.2.

8.2 Isn’t This a Bad Choice of Representation?

Our input-output representation of a problem, with no corresponding textual description or łreal-
worldž meaning, is almost certainly overly restrictive. Would students have had this much difficulty
if presented with a good textual specification?

(1) As we have noted earlier in this paper, this style of presenting problems helps us circumvent
numerous factors that would have been major confounds. Thus, it is still valuable from an
experimental perspective, though we must allow that it may subtly advantage one style of
problem over another.

(2) More importantly, remember that we were not creating an artificial activity in vitro. Rather,
we were responding to an already observed anecdotal problemÐwhich had been observed in
a setting with traditional verbal problem descriptions.

Nevertheless, it is worth asking what a textual description might look like. Before we settled on this
presentation, we tried numerous ways to express the problems verbally. What we found was that
our descriptions were either too obscure (hardly better than the examples, and perhaps even more
confusing for their lack of concreteness) or effectively gave away the solution strategy. Since our
goal was to see whether students were able to find the compositions, the latter approach defeated
the objective. We were, however, unable to find a happy medium between these extremes. We
believe finding a strategy between these extremes is an important issue (see section 10.2).

8.3 What About fold?

We intentionally left the variants of fold out of our study due to the universality of that function,
making responses harder to evaluate. In this, we were inspired by other authors [Krishnamurthi
and Fisler 2021], who have also found it confusing to include fold because it makes student
responses more ambiguous: in particular, a student who is either overly clever or lazy could
write fold in response to all questions, which would not be wrong but also not be informative.
In addition, we have found that students at the stage we are studying generally have a much
poorer understanding of fold than of the history-less hofs, often possessing only a mechanical
understanding. Nevertheless, we do see some evidence of students recognizing uses for fold, and
many more might have recognized it but eschewed it because it was left out of our set.

8.4 What Are the Confounding Factors?

What we have presented is mostly anecdotal and narrowly scoped; to make up for the narrow
scoping, we have gathered some hard data showing that, at least in this setting, there is evidence of
a problem. However, there are numerous confounding factors that may cause this to be a strictly
local phenomenon and/or an artifact of some other difficulty. For instance:

• As previously discussed, the very way we have stated the problem is itself potentially prob-
lematic; the stark input-output modality turns this into a pattern-finding activity. Thus, much
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more work is needed to address these issues and create a credible, generalizable, and hence
robust research result.

• Some of the ac problems that were found to be difficult actually relied on fold or some other
such history-sensitive operation; that alone could have been the cause of why staff found
them more difficult. (In mitigation, the pipeline problems in this paper do not require fold,
and yet create difficulty, especially once we consider the narrative answers.)

• Some problems may have lurking domain knowledge: for instance, P1 above clearly relies
on students recognizing familiar Fahrenheit/Celsius patterns, but the narrative responses
suggest that a handful of them failed to do so. (In mitigation, P2Ðwhich does not have a
similar dependenceÐdoes no better, and indeed much worse.)

• Recall that our work was motivated in section 1 by two courses, one of which (dc) was based
on programming functionally over tables rather than lists. We have to therefore be open
to the possibility that tabular datatypes introduce additional difficulties that we have not
considered, some of which could even be dominant. (In mitigation, we see here that lists are
problematic enough.)

• Our students programmed in Racket. It is possible that explicit and checked types, automated
currying, or writing operations left-to-right (using pipelining notations) instead of right-to-
left (through nested composition), could alter how students program, and even impact their
plans (which is what this paper studied).

At the same time, the positive numbers given above may well be an over-count. The ac students
had much more programming experience than those of dc, so they may have been able to work
their way through their difficulties. The ac students may also be more mathematically sophisticated.
Lacking these advantages, the dc studentsÐwho are probably much more representative of novice
programmers broadlyÐmay do much more poorly, either overall or only on pipeline problems. We
return to discussing student populations in section 10.4.

9 RELATED WORK

Our primary related work is [Krishnamurthi and Fisler 2021]. That work showed both that students
can learn hofs well (which is an implicit prerequisite of this work), and established the precedent
of using input-output pairs as an instrument to study hof problems.
The initial motivation for this paper came about when we tried to extend that paper, applying

their methodology to compositions of hofs. We found it surprisingly difficult to create input-output
pairs representing some compositions. We reflected on our difficulty, and then wedded it to the
much richer, longer-term observations about courses, as discussed in section 1.

A companion paper [Rivera et al. 2022] studies the question of plans for composition problems in
much more detail, with a rigorous methodology to analyze student responses. That paper exploits
the insights of this one by focusing on structural problems, since pipeline problems were felt to be
too difficult. That paper also introduces the idea of using a block-based syntax to have students
describe their plans.

Identifying when to derive the program structure from the datatype is a known open question in
htdp as well [Castro and Fisler 2020]. When does one use structural versus generative recursion?
To be overly reductive, htdp’s answer essentially boils down to łattempt to use structural, and if
it doesn’t work well, then you know to use generativež. One could imagine giving similar advice
for pipeline versus structural composition (section 10.1), but it might be possible to do more with
scaffolds (section 10.2).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 102. Publication date: August 2022.



102:12 Elijah Rivera and Shriram Krishnamurthi

10 PEDAGOGIC DIRECTIONS

Next we discuss some of the pedagogic consderations induced by this work.

10.1 A Pedagogic Progression

We believe there is a strong parallel between the distinction this paper raises and that between
łstructuralž and łgenerativež recursion described by htdp. Structural recursion follows the structure
of the datum: each sub-problem is given by the data definition. Structurally recursive problems
therefore have three advantages:

• At a mechanical level, termination over freely-generated terms is guaranteed, because each
recursive call łpeels offž a layer.

• At a solution level, the structure of the datum suggests a useful starting point for the structure
of the solution.

• There are commonalities between problems over the same datatype, so students can trans-
fer [Thorndike and Woolworth 1901] some of their knowledge.

In contrast, in generative recursion, recursive calls computationally generate new sub-problems.
Therefore, at a mechanical level termination is not guaranteed (the sub-problem may be the same
size or even bigger, and complex termination criteria may be necessary); at a solution level, they can
require an ła ha!ž; consequently, there is little transfer between problems, each of which requires
different insights.

Our work is strongly inspired by this distinction in htdp. Indeed, we use the name łstructuralž
due to this inspiration. We chose the name łpipelinež rather than łgenerativež (a) because the term
is already well-established in data processing and data science, (b) to reduce confusion with the
pair of terms in htdp, since our distinction is between styles of composition, not recursion.3

htdp makes (and implements) the case that education in recursion should start solely with
structural problems. It argues that only after students are comfortable with the mechanics of
structural recursion should pedagogy turn to generative problems. We see strong parallels here. To
be sure, the set of problems we can solve structurally seems to be quite limited (perhaps even more
so than with structural recursion). Nevertheless, it is rich enough to express some useful and perhaps
interesting problems (e.g., we can phrase problems in terms of tasks recognizable from games like
Scrabble). Anyway, interesting problems that students cannot solve can be counterproductive!

10.2 Scaffolding Pipeline Problems

We have spent some time reflecting on what makes pipeline problems appear harder. We conjecture
that one source of difficulty is that the student cannot see the values at intermediate stages during
the composition. Absent this visibility, the set of possible transformations is simply too great. We
conjecture that in contrast, the educators who assign these problems do not suffer from this either
due to experience, resulting in an expert blind spot [Nathan et al. 2001], or due to the simple
expedient of having worked backward from an intended solution.
At the same time, educators cannot shirk pipeline problems entirely. Many interesting, and

real-world, data processing tasks are pipelines.
Therefore, when introducing them early in the curriculum, we recommend that educators scaffold

them. One way is to word the problem statement to give very explicit directions, but this runs the
risk of essentially giving away the solution, thereby eliminating a learning opportunity. Another
is to provide examples of intermediate results from which students can infer the pipeline stages.

3It is worth considering what solutions would look like if they were written with explicit recursion rather than by composing

hofs: would their recursive solutions be structural or generative? It is currently unclear to us the extent to which these two

notions might be related.
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In some cases it may be useful to suggest intermediate types alone, but in cases where the type
does not changeÐsuch as the table-transforming programs of dcÐit is unclear how much this will
help students and how much it will frustate them. Our hope is that the dichotomy introduced in
this paper will lead to much more research on programming methods, which can help educators
analyze problems and determine which may need more scaffolding than others.

10.3 Problem-Solving Strategies

There is a small but significant literature on the problem-solving strategies employed by program-
mers. Early studies argued for different łforwardž and łbackwardž search strategies employed
by novices versus experts, though these did not survive subsequent analysis. These ideas were
summarized and extended by Rist [1989], who found that programmers recall plan schemas to aid in
solution, and attributed some differences in performance to knowledge and recall of these schemas.
How do these results play out in our setting? Most of this work rarely considered data-rich

problems or, in particular, problems with rich data structure. In contrast, our students had been
shown a table (Figure 1 of [Krishnamurthi and Fisler 2021]) characterizing high-level properties of
most of the hofs we use: • output type; • for list outputs, output element type relative to input; •
output length relative to input; • output order relative to input; • which/how many elements of
input determine an output element; and • type of operation consumed by the hof. Our findings
show that students clearly exploit various type- and structural-properties of hofs in problem
decomposition; this is especially evident from problems like I1, where students use these properties
to argue why a solution is impossible. Thus, it would be interesting to study the role of semantic
properties of high-level operations (such as hofs) in planning. It would also be interesting to
consider how students would fare in an output-driven setting [Gibbons 2021] as opposed to one
driven by inputs (as described by htdp).

10.4 From Experience to Research

In computing education research, it is increasingly common to conduct multi-institutional, multi-
national (MIMN) studies. This helps account for many variables, and identify true trends across
student populations. To this, we would add ML: multi-lingual. We are therefore offering to host a
MIMNML study, and invite educators who are interested to reach out to us!
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