
Observations on the Design of
Program Planning Notations for Students

Elijah Rivera
elijah_rivera@brown.edu

Brown University
Providence, RI, USA

Shriram Krishnamurthi
shriram@brown.edu
Brown University
Providence, RI, USA

Kathi Fisler
kfisler@brown.edu
Brown University
Providence, RI, USA

ABSTRACT
Program planning is the process of splitting a problem description
into subtasks that can be solved independently, then composed into
a solution. While much has been written about planning since the
1980s, little research looks at modern contexts such as programs to
process data tables. Tool support for this sort of planning is even
rarer. As part of a project to develop such tools, we have run two
studies to try to identify steps, representations, and interactions
that would support novice university students in planning and
programming multi-task programs that process data tables. This
experience report describes our observations so far, while also
raising questions about how to make planning useful for students.

CCS CONCEPTS
• Social and professional topics→ Computing education.

KEYWORDS
Program planning, program decomposition, plans

ACM Reference Format:
Elijah Rivera, Shriram Krishnamurthi, and Kathi Fisler. 2024. Observations
on the Design of Program Planning Notations for Students. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20–23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630901

1 INTRODUCTION
Programmers frequently decompose problem descriptions into
smaller pieces, which they solve and then combine into a complete
solution. Planning refers to strategic approaches to this process in
which at least some aspects of the decomposition and composition
activities are outlined prior to implementing the final code. Plan-
ning is arguably a critical component to programming and system
design, especially for multi-person projects.

Novice programmers can also leverage planning when figuring
out how to get started on problems and projects that extend beyond
what they have written before. In an ideal world, planning could
make the programming process more manageable for many stu-
dents: it could help them outline solutions and provide a structure

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE ’24, June 03–05, 2024, Portland, OR
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-XXXX-X/18/06.
https://doi.org/10.1145/3626252.3630901

in which to try and revise approaches to problem tasks before they
get mired in the low-level details of specific implementations.

This sounds good in theory, and has for over 40 years (see sec-
tion 2). Yet planning is rarely taught, and tools to help students with
it—and especially to provide them feedback while planning—hardly
exist. The community has not yet arrived at consensus for tools
and representations for creating and assessing students’ plans or
approaches to planning.

We have been trying to teach planning explicitly to novice uni-
versity students, including creating tools for the process. In this, we
tried building on prior work [7, 14] that had success with students
who had some prior programming experience. In contrast, we have
not succeeded at tool designs that work well for our novice students.
This experience report describes the things we’ve tried and sum-
marizes our observations from each. We hope that others who are
trying to teach planning might benefit from our experience.

2 RELATEDWORK
Early work on planning focused on how students construct code,
contrasting situations where students were solving problems with
familiar structures versus new ones. Spohrer and Soloway’s model
of plan composition inMarcel [15] suggested that novices start from
an initial plan then refine it as needed to add tasks and handle errors.
Rist’s model of planning for new problems posited that students
first identify a recognizable focal computation in a program, then
build out the rest of the program around that [12, 13]. Castro [1] also
found evidence of Rist’s focal computations among novice students
who were developing novel programs via functional programming.

Soloway and Spohrer observed that composing plan fragments
appears to be harder for novices than either decomposing problems
into subtasks or producing code for familiar subtasks [15]. This
work was done in the context of imperative programming with
loops and I/O, in which code for different subtasks would need
to be interwoven at the level of individual lines, rather than run
sequentially or composed through function calls. In our studies,
students use higher-order functions and built-in table operations on
problems for which sequential and conditional composition suffice.

Only a couple of projects have studied pedagogic strategies for
teaching planning. Muller et al. developed “pattern-oriented in-
struction” in which students learned a collection of named patterns
and were taught to label and identify these patterns in solving new
problems [11]. de Raadt et al. gave students a “strategy guide” for in-
tegrating plans [3]. Both of these efforts centered around imperative
programming and their idiomatic constructs.

Cunningham et al. developed purpose-driven programming, an
approach to planning, programming, and learning code structures
in domain-specific contexts [2]. In their curriculum, learners work

https://orcid.org/0000-0002-5374-0171
https://orcid.org/000-0001-5184-1975
https://orcid.org/0000-0002-7895-8206
https://doi.org/10.1145/3626252.3630901
https://doi.org/10.1145/3626252.3630901


SIGCSE ’24, June 03–05, 2024, Portland, OR Elijah Rivera, Shriram Krishnamurthi, and Kathi Fisler

with domain-specific plans for common tasks (e.g., deleting files or
searching for all matching tags in a website). Developing a program
starts with decomposition into goals and subgoals phrased in terms
of the domain-specific tasks. Code schemas for those subgoals
are retrieved from a library, then tailored to the problem details.
Their proposed plan-and-code development tool starts with code
comments to label the goals and subgoals (building on work on
subgoal labeling in CS education [9, 10]). Our work is more general
purpose (it does not fix a domain), though the names of the higher-
order and built-in functions with which our students process tables
do carry more semantic information than general-purpose loops.

Representations of plans and how they evolve (notationally)
during planning has also been the subject of recent research. Our
prior work proposed representing plans as compositions of higher-
order functions [14]. That student population (in an accelerated-
pace intro course, most with some programming in high school)
was effective at recognizing which higher-order functions applied
to problem statements and at using these functions as a skeleton
for plans [7]. This work also explored the idea of adapting Snap! [6]
to planning via custom blocks. Our paper takes inspiration from
this work, instead trying similar ideas with novice university-level
programmers and for programs that process tables rather than lists.

Scholars have argued that planning is only suitable for some peo-
ple. Levi-Strauss’ concept of bricolage [8], which involves a more
experimental approach to designing solutions, has been applied
to computing education [16]. Planning assumes certain cognitive
skills, which might not apply to all in neurodiverse populations. We
do not claim that planning will work (the same way) for all learners;
knowing how different students decompose and/or compose tasks
and code, however, is still important for programming instruction.

3 THE ALLURE OF PLANNING
Figure 1 provides a problem that illustrates what our department
expects students to be able to solve sometime during their first
semester of learning to program. In a nutshell, students are given
two CSV tables—one with prices of art pieces in some currency and
the other with currency conversion rates—and asked to produce
the price of an art piece in a different currency than its baseline
one. Samples of the tables and desired computation appear in fig. 1.

Figure 2 outlines the key steps in the computation (these align
with the table-manipulation operations presented in our lectures).
Students could organize the final code in different ways, depend-
ing on which helper functions they create, where they introduce
variables, and whether they abstract otherwise duplicated computa-
tions into helper functions. At the time of this assignment, students
have been shown only one way to extract a row from a table (using
a built-in higher-order function to find rows based on predicates).

Having assigned this or similar problems for many years, cer-
tain challenges arise frequently. Some students can’t get started
(decomposition challenges). Some do, but try to process both tables
simultaneously (subtask-separation challenges). Some get code that
works but the final structure of their helper functions or expres-
sions is unwieldy (composition challenges). We hypothesize (or at
least want to believe) that support for planning would help. We are
trying to teach students to extract and follow an outline at the level
of granularity in fig. 2 (though not necessarily in that format).

Problem statement: Companies that do business internationally
need to be able to quote prices in different currencies, following a
table of exchange rates. Your starter code defines two tables: one
specifies the baseline currency and price of art pieces by their ID
numbers; another specifies the conversion rate (the multiplicative
factor) to convert from one currency (from-c) to another (to-c).

Submit a plan for a function called get-art-in-1 that computes the
price of a piece of art in a specific currency. The function takes in
an art table, a currency table, the id of an art piece, and a payment
currency; it returns the price of the art item in the desired currency
based on the data in the two tables. For this problem, assume that
the currency table has a row with the base currency in the first
column and the desired currency in the second column.

For example, given the following two tables, we expect get-art-in-1
to report that the price of art piece 24 in EUR would be 120 ∗ 0.05.

Figure 1: The currency-conversion problem

(1) Find the row of the art-price table with the given art ID
(2) Extract the cost and baseline currency for the piece from

that row
(3) Find a row in the currency-conversion table with the baseline

currency in the from-c column and the target currency in
the to-c column

(4) Extract the conversion rate from that row
(5) multiply the art piece cost by the conversion rate

Figure 2: A currency-conversion solution outline

4 WHAT MAKES FOR USEFUL PLANNING?
We view planning as a process by which a problem statement is de-
composed into parts that can be implemented, then composed into
a solution. A plan outlines the decomposed parts and how they will
fit back together. Planning could be viewed as a process in which
a plan is created before coding begins, and program elements are
developed and composed according to the plan. Such a clean view
is unrealistic in practice. Part of planning involves understanding
the problem, which can involve writing some pieces of code. This
could lead to refinement of the plan.

What, then, makes for useful planning? Regardless of whether a
plan is fully created prior to coding or is developed concurrently
with bits of coding, we posit that useful planning helps a student
work on subtasks of a problem in isolation, while still keeping track
of how each subtask fits into a bigger picture. Thus, the subtasks
in a plan should be at a granularity that the student knows
how to solve (say, because they have previously solved similar



Observations on the Design of
Program Planning Notations for Students SIGCSE ’24, June 03–05, 2024, Portland, OR

problems). This implies that different students could have different
plans for the same problem. For a student to work productively
from a plan, the subtasks (and their intended compositions)
should also be readily implementable in code. Since different
languages and platforms have different constructs at different levels
of abstraction, this implies that plans are not necessarily language-
agnostic. This may be contentious, especially since plans should
allow for multiple implementations. With the end goal of planning
and plans being the production of code, however, we must assume
that students will be thinking about what pieces they can build,
and how, as part of the planning process; language features affect
this, especially for novices who know only a handful of constructs.

Our challenge, then, is to figure out how to teach, support, and
assess planning in ways that help students

• make sense of problems,
• track high-level subtasks,
• sketch out how subtasks compose, and
• adapt when initial ideas fail to work as conceived.

Each of these pieces raise their own questions about how to rep-
resent that piece and how to support a programmer in working
productively between the pieces and the eventual code.

5 OUR TEACHING CONTEXT AND STUDENTS
We work at a highly selective university in the USA. We ran the
experiments in this paper across two consecutive offerings of a
CS (computer science) course for novices (here called CS-NOV).
The course follows the “data-centric” approach [5] to combine data
science and computer science concepts. Students learn to write
programs to process and analyze data tables (loaded from CSV or
Google Sheets), as well as basic data structures (lists, records, trees,
dictionaries). The course starts in functional programming, then
transitions to Python for stateful programming and working with
Pandas. The course attracts roughly 200 students per semester from
all class years and many intended majors. Most students do not
intend to major in CS, but rather want to learn some programming
and computing to apply to work in other disciplines.

6 OUR EXPERIENCES
Recall that our focus is on experiments that inform building tools
to help students with planning. Here, we look at two approaches.
The first was tool-driven and based on promising prior work, but
effectively failed. The second set aside tooling to focus on notations
and was more successful.

6.1 Planning with Blocks
Inspired by previous work showing that university students with
prior programming experience could effectively construct viable
plans using higher-order functions [14], we decided to see whether
this also applied with the novice students in CS-NOV. The previous
work had created custom Snap! [6] blocks to enable drag-and-drop
planning; we did the same in our context of table operations.

Figure 3 shows a screenshot of the setup that we provided our
students for the currency-conversion problem (fig. 1) during Fall
semester 2022. Students were given a palette of blocks correspond-
ing to operations on tables that they had been learning (see lower

Figure 3: Blocks for planning table functions (the lower block
for get-art-in-2 was for a related problem that this paper is
not discussing)

left of fig. 3). Unlike with conventional blocks programming, how-
ever, these table-operation blocks allowed both nested blocks and,
crucially, free-form text within the holes in each block.

The ability to use free-form text enables planning as opposed to
coding: a student can describewhat should happenwithin that block
without writing any code. Each student could individually choose
to use prose at the point where they felt a textual description would
suffice, and could control the level of detail in that prose. Nesting
of blocks provides a structured notation for subtask composition.

As instructors, we liked that Snap! programs could be saved (and
submitted) as XML files: we hoped to create analysis tools that read
the XML and provided students with automated partial feedback
on the quality of their plans (e.g., did it follow one of the expected
shapes). Completely free-form text or diagrams would be hard to
parse to give feedback. We believe that students are more likely
to use program design tools that give actionable feedback, so this
feature was important to our instructional goals.

Usage: Students used the blocks-based planning tool in three as-
signment contexts: theywere introduced to it during a TA-facilitated
(ungraded) lab (roughly a month into the course), then they used
it on the assignment containing the currency-conversion problem
(one week later), then they optionally used it as part of a course
project with a large design component (two weeks later).

Experience: Students used the blocks in different ways on the
currency-conversion problem. Figure 4 shows a submission that
took advantage of free-form text in blocks. This solution sets up a
couple of helper functions (fun) blocks, but doesn’t try to nest all of
the blocks (though the prose indicates the intended nesting). The
function arguments needed to filter the tables (the filter-with blocks
in the right column) are described only in prose. In contrast, the
solution in fig. 5 puts complete code into the free-response boxes
(alongwith small bits of prose). Some of those code fragments define
new functions; some use conditionals. The solution does not use
the built-in blocks for these constructs. (The free-form areas are not
code-editor windows, so the code in those areas lacks indentation.)



SIGCSE ’24, June 03–05, 2024, Portland, OR Elijah Rivera, Shriram Krishnamurthi, and Kathi Fisler

Figure 4: A student plan with text in blocks

Figure 5: A student plan with code in blocks

We conjecture that the student for fig. 5 may have written much
of the code first, then gone back to create plans (we know many
students did this based on discussion board posts and office hours).
However, the lowermost box (with the definition of convert) does
not contain valid code: there are errors with syntax, unbound vari-
ables, and the table contents. This student may then have inter-
leaved planning and coding. Regardless, this “plan” is much closer
to code than we were hoping to see. The plan in fig. 4 was much
closer to what we expected and hoped for.

During the assignment, many students expressed uncertainty
regarding the level of detail and style that the instructor was looking
for in plans. Students did not feel they had been given sufficient
instruction regarding expectations (despite the lab, a lecture, and a
separate course resource on planning); a few explicitly asked how to
maximize their grades. For at least some students, planningwas seen

as a requirement rather than an actual aid to their programming
process. Other students, in contrast, came to office hours with plans
in hand and sought help in working between plans and code.

The Problem of Conditionals. Conditionals, in particular, created
confusion regarding the boundaries between plans and code. We
had emphasized in lecture that plans were meant to be high-level
outlines of how a computation would be done; they should not be
as detailed as final code. None of the examples that we covered
in lecture or in lab needed (or used) conditionals. The currency-
conversion problem doesn’t need them either. The only conditional
behavior is in the table filter-with operation, which takes a predicate
(as a function) as an input. For the final currency-conversion code,
this predicate simply returns the result of an equality test between
two values (as shown in the top free-form box in fig. 5). However,
many students in CS-NOV found it confusing to program directly
with Boolean expressions, and instead used them in an if (a style
we noticed in their programming that seemingly carried over to
their plans as well). Indeed, we more often saw if -expressions at
the code level as in fig. 5 than at the planning level as in fig. 4.

Feedback. Overall, however, students had extensive complaints
about doing block-based planning. These were sufficiently numer-
ous that we made the use of blocks optional on the course project,
even though students had to produce some form of plan. Out of
104 project submissions, only four students appeared to use Snap! .
Instead, most students wrote to-do list style outlines (like fig. 2).

To better understand what happened, we added an optional
ungraded question to the final exam asking students about their
experience with the blocks-based planner. Out of 195 students who
took the final, 138 responded. Representative comments include:

Snap! was time-consuming & unhelpful b/c they re-
quired too many parts that were not realistic to my
thought process when actually coding.

I planned all my code in writing and after writing the
code did Snap!.

I plan using pen and paper and Snap! is too structured.

Snap! felt like busywork to me mostly. I mean it was
helpful to some degree for cementing how different code



Observations on the Design of
Program Planning Notations for Students SIGCSE ’24, June 03–05, 2024, Portland, OR

Figure 6: Two to-do list plans at different detail levels

pieces fit together: conditionals, helper functions, etc.,
but I think it took more time than it’s worth.

My thought process isn’t like snapping LEGOs together
[...] I do understand teaching how to plan is important
[but let] students upload a picture/PDF of their writ-
ten/typed checklist so there’s flexibility on how to think
(arrows, bullet points, etc) and then very leniently grade
and/or analyze those.

After processing the student work and feedback, we concluded
that the blocks-based planning experiment had failed in CS-NOV (in
contrast to the earlier findings [14] with more experienced students;
we return to this contrast in section 7). We decided to return to the
drawing board, have students plan in more free-form style in the
next semester, and see what insights we might gain about providing
tool support for planning for novice CS students.

6.2 Open-Ended Planning of Table Functions
Given that students perceived blocks as too rigid (despite the ability
to write free-form text inside the holes), in Spring 2023, we relaxed
the medium and let students use plain paper. We also gave them
complete freedom in how they wanted to present their plans. For
guidance, we showed students both a textual form of plan like
a to-do list (similar to fig. 2), and a visual one using diagrams.
Students saw plans for 3-4 programs across lecture and lab (with
more examples of the textual form). We informed students that they
were free to use any format that appealed to them, even if it did not
match the above two. Crucially, we did not show the block-based
notation or offer them Snap! . We asked students to experiment
and comment on their choices. Students did so by turning in this
information and their plan (typically scanned to PDF) alongside
their final code.

Results. We again consider the currency-conversion problem.
The resulting plans were mostly “correct” in their correspondence

to the problem statement, but at different levels of detail. Figure 6
shows examples of both minimal and detailed plans. The minimal
plan is not entirely correct (the third step for ordering based on
cost is not appropriate for the problem). The detailed plan makes
creative use of indentation and color to outline implementation
plans for each high-level step (we had not shown something like
this in lecture or lab). Nearly all of the to-do list plans were at one
of these extremes (minimal or with code or implementation detail).

Mixing Notations. Most students used just one notation in their
plan; the vast majority were to-do lists. We were surprised that only
six students used more than one, especially since it would be easy
to do so on paper. We invited each of the six for a private in-person
interview about their choices. We explained that we were trying
to design tools to support planning, so we were also interested in
their thoughts on how tooling could help their planning process.
This section discusses the feedback from three students. Each was
working on an expanded version of currency conversion in which
the two currencies could appear in either order in the table.

Student A. This student used a both a diagram and a to-do list.
The diagram covered the extraction of the conversion rate from the
currency table, while the to-do list covered the use of that rate to
determine the converted price from the second table.

The student reported that planning was useful because the oper-
ations they wanted to use manually didn’t line up with those in the
programming language. Planning with the diagram felt “dumber”,
but planning with text seemed too similar to writing code, which
created a mental block for the student. Regarding choosing between
the two, the student said “When I could visualize in my mind, I
only needed text. When it doesn’t fit in my head, I made a diagram”.
The student reported that they tried going back to the plan when
they got stuck, but usually found that their mistakes were in the
low-level code rather than the plan. Overall, the student wished
for “frameworks for approaching problems” as they were used to in
social science research or the scientific method (CS-NOV already
teaches the design recipe from How to Design Programs [4]; our
planning work is an attempt to expand on it).

Student B. This student tried both a high-level text to-do list
plan and a more detailed diagram-based plan. They found that text



SIGCSE ’24, June 03–05, 2024, Portland, OR Elijah Rivera, Shriram Krishnamurthi, and Kathi Fisler

and the ability to scribble down ideas informally was easier. The
student reported putting more detail into the plan for “fear that we
were going to get counted off”. They switched from planning to
coding when planning grew tiresome. They also mentioned that
which device they were using affected their plan representations:
“maybe it would’ve been easier to make diagrams on my laptop, but
I like working on my iPad”. When asked whether they thought tool
support for planning would be useful, the student replied “I tend
to use what I’m familiar with, so even if there’s a tool I probably
wouldn’t learn it”. In general, they were more interested in having
more instructions or examples rather than a tool.

Student C. This student wrote plans as comments in their code.
They reported trying to engage with planning, but found they
already think in code and “Didn’t like having two artifacts out of
sync”. The student preferred a code-based format to free-form text:
“I don’t like doing it in all English, because I find it very difficult
to look and determine what’s what. I like using variable names for
that.” This student did find planning helpful, both for seeing the
decomposition and because plans give away to collect signatures for
functions that would eventually be needed, but having a planning
tool was not attractive: “Naming variables as steps, possibly with
English headers, would be my most productive version of the plan
because then I could just go straight into the code”.

7 DISCUSSION AND FUTUREWORK
Our experiences across the two semesters raised interesting trade-
offs between block-based and free-form notations for planning. In
general, we saw more variation in the nature of plans with the
block-based tool. The “free form” plans were nearly all to-do lists

with similar high-level steps, though some steps were more detailed
than others. With blocks, students focused more on control flow us-
ing either if-expressions or named functions and function calls; the
vast majority of plans were either function-oriented, conditional-
oriented, or to-do list style sequences of steps. The provided blocks
shaped the plan structures. In contrast, the lack of structure in “free
form” mode seemed to result in to-do lists being a default.

In contrast to our previous data [14], the CS-NOV block-based
plans seemed messier and more code-like. We later realized that the
problems in the previous paper had required boolean predicates,
but not conditional logic. Students who used to-do lists sometimes
captured conditionals via nested bullets; others wrote separate
bullets for if and else without nesting. Those working in blocks
could use explicit if-blocks or if-like expressions in free-form text.
Since there was no way in Snap! to nest blocks within free-form
text, however, once students wrote if-expressions, they stayed in
code-like notation. This raises future work questions about how to
represent conditional branches in plans.

Proportionally more students in CS-NOV expressed frustration
with Snap! than in the previous study. Some students found it con-
fusing to learn a second notation; many complained that the blocks
didn’t offer (enough) benefit. Perhaps students already understood
how to do the problems, weren’t sure what good plans look like,
or didn’t know how to leverage plans to write code. This needs
further study, as students will (reasonably) resist planning if they
do not perceive benefits to doing so. Explicitly teaching how to use
plans when coding and debugging might also help convey benefits.

Returning to our “useful planning” criteria from section 4, this
paper highlights the need for deeper study of how notations support
planning for composition, which was where student plans most
often fell short. Little research has looked explicitly at this, despite
existing work showing that it causes students more difficulty than
decomposition [1, 15]. Some to-do list plans leave the mechanisms
for composing steps unspecified, leaving students stuck after they
implement individual steps. Some students put explicit variable
names in plan steps to support later composition, but most do
not. Diagram-based plans use arrows or lines to connote all of
sequential control-flow, conditional control-flow, and data flow; this
overloading of arrows could cause later confusion. Future studies
of planning should focus on forms of expressing composition, how
they might help students structure code, and how to encourage
students to think about planning beyond decomposition.

Studying composition would also enrich conversations about
structured planning versus bricolage in CS education. Bricoleurs
may prefer experimentation to structured decomposition, but both
approaches eventually end up having to compose parts of solutions
into effective wholes. How do students who take each approach
deal with composition, and how might we better support them
at doing so? We still have much to learn from studying planning
across its own component subtasks.

ACKNOWLEDGMENTS
Thanks to CS-NOV staff and students for their participation, and
to Jens Mönig for help configuring Snap! . The first author thanks
his mom for helpful discussions about teaching and learning. Work
partly supported by NSF award SHF-2227863.



Observations on the Design of
Program Planning Notations for Students SIGCSE ’24, June 03–05, 2024, Portland, OR

REFERENCES
[1] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Between

Bottom-Up and Datatype-Driven Program Design. In Proceedings of the 47th ACM
Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). ACM, New York, NY, USA, 205–210. https://doi.org/10.1145/
2839509.2844574

[2] Kathryn Cunningham, Barbara J. Ericson, Rahul Agrawal Bejarano, and Mark
Guzdial. 2021. Avoiding the Turing Tarpit: Learning Conversational Programming
by Starting from Code’s Purpose. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association
for Computing Machinery, New York, NY, USA, Article 61, 15 pages. https:
//doi.org/10.1145/3411764.3445571

[3] Michael de Raadt, RichardWatson, andMark Toleman. 2009. Teaching and Assess-
ing Programming Strategies Explicitly. In Proceedings of the Eleventh Australasian
Conference on Computing Education - Volume 95 (Wellington, New Zealand) (ACE
’09). Australian Computer Society, Inc., Darlinghurst, Australia, Australia, 45–54.
http://dl.acm.org/citation.cfm?id=1862712.1862723

[4] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishna-
murthi. 2018. How to Design Programs: An Introduction to Programming and
Computing (2 ed.). MIT Press. https://htdp.org/

[5] Kathi Fisler, Shriram Krishnamurthi, Benjamin S. Lerner, and Joe Gibbs Politz.
2023. A Data-Centric Introduction to Computing. Published on-line. https://dcic-
world.org/, accessed 2023-07-29.

[6] Brian Harvey and Jens Mönig. 2010. Bringing “No Ceiling” to Scratch: Can One
Language Serve Kids and Computer Scientists?. In Proceedings of Constructionism
2010: Constructionist Approaches to Creative Learning, Thinking and Education:
Lessons for the 21st Century. Library and Publishing Centre, Facutly of Mathe-
matics, Physics and Informatics, Comenius University, Bratislava, 1–10.

[7] Shriram Krishnamurthi and Kathi Fisler. 2021. Developing Behavioral Con-
cepts of Higher-Order Functions. In ACM Conference on International Computing
Education Research.

[8] C. Levi-Strauss. 1962. The Savage Mind. University Of Chicago Press.
[9] L.E. Margulieux, B.B. Morrison, and A. Decker. 2020. Reducing withdrawal and

failure rates in introductory programming with subgoal labeled worked examples.
International Journal of STEM Education 7, 19 (2020). https://doi.org/10.1186/
s40594-020-00222-7

[10] Lauren E. Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-
Labeled Instructional Material Improves Performance and Transfer in Learning
to Develop Mobile Applications. In Proceedings of the Ninth Annual Interna-
tional Conference on International Computing Education Research (Auckland, New
Zealand) (ICER ’12). Association for Computing Machinery, New York, NY, USA,
71–78. https://doi.org/10.1145/2361276.2361291

[11] O. Muller, B. Haberman, and D. Ginat. 2007. Pattern-oriented instruction and its
influence on problem decomposition and solution construction. In Proceedings of
ITiCSE. ACM, New York, NY, 151–155.

[12] Robert S. Rist. 1989. Schema Creation in Programming. Cognitive Science (1989),
389–414.

[13] Robert S. Rist. 1991. Knowledge Creation and Retrieval in Program Design: A
Comparison of Novice and Intermediate Student Programmers. Hum.-Comput.
Interact. 6, 1 (Mar 1991), 1–46.

[14] Elijah Rivera, Shriram Krishnamurthi, and Robert Goldstone. 2022. Plan Com-
position Using Higher-Order Functions. In ACM Conference on International
Computing Education Research. https://doi.org/10.1145/3501385.3543965

[15] James C. Spohrer and Elliot Soloway. 1989. Simulating Student Programmers. In
International Joint Conference on Artificial Intelligence. 543–549.

[16] Evelyn Stiller. 2009. Teaching Programming Using Bricolage. In Proceedings of
the Consortium for Computing Sciences in Colleges. 35–42.

https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/3411764.3445571
https://doi.org/10.1145/3411764.3445571
http://dl.acm.org/citation.cfm?id=1862712.1862723
https://htdp.org/
https://dcic-world.org/
https://dcic-world.org/
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1186/s40594-020-00222-7
https://doi.org/10.1145/2361276.2361291
https://doi.org/10.1145/3501385.3543965

	Abstract
	1 Introduction
	2 Related Work
	3 The Allure of Planning
	4 What Makes for Useful Planning?
	5 Our Teaching Context and Students
	6 Our Experiences
	6.1 Planning with Blocks
	6.2 Open-Ended Planning of Table Functions

	7 Discussion and Future Work
	Acknowledgments
	References

