
Features and Object Capabilities
Reconciling Two Visions of Modularity

Salman Saghafi
WPI

salmans@cs.wpi.edu

Kathi Fisler
WPI

kfisler@cs.wpi.edu

Shriram Krishnamurthi
Brown University
sk@cs.brown.edu

Abstract
The prevalence of threats and attacks in modern systems de-
mands programming techniques that help developers main-
tain security and privacy. In particular, frameworks for com-
posing components written by multiple parties must enable
the authors of each component to erect safeguards against
intrusion by other components. Object-capability systems
have been particularly prominent for enabling encapsulation
in such contexts.

We describe the program structures dictated by object
capabilities and compare these against those that ensue from
feature-oriented programming. We argue that the scalability
offered by the latter appears to clash with the precision of
authority designation demanded by the former. In addition to
presenting this position from first principles, we illustrate it
with a case study. We then offer a vision of how this conflict
might be reconciled, and discuss some of the issues that need
to be considered in bridging this mismatch. Our findings
suggest a significant avenue for research at the intersection
of software engineering and security.

Categories and Subject Descriptors D.2.11 [Software Ar-
chitectures]: Modules

General Terms Design, Languages, Security

Keywords Feature-oriented programming, object capabili-
ties, modularity

1. Introduction
There are many competing visions of what constitutes the
content of a module: phrases like “separation of concerns”
still permit a wide variety of interpretations, as the past
several decades of research demonstrates.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD’12, March 25–30, 2012, Potsdam, Germany.
Copyright c© 2012 ACM 978-1-4503-1092-5/12/03. . . $10.00

Given the increasing importance of security, privacy, and
related properties, one useful criterion for decomposing sys-
tems into modules is to consider what impact the decompo-
sition would have on enabling reasoning about these prop-
erties. In particular, when developers compose code written
by multiple (perhaps mutually-untrusting) parties, there is
a danger that code from one module might inadvertently or
maliciously damage the behavior of another. Third-party
composition takes place in many traditional component-
based systems as well as newer platforms such as extensible
Web browsers (“extensions”), client-side Web applications
(“mashups”), and mobile phone operating systems (“apps”).

Due to the dangers of unfettered code combination, plat-
forms are moving towards circumscribing the set of system
resources to which a component is given access, rather than
letting the component get the full power of the user running
it. This makes it possible to bound the damage that hostile or
faulty modules can inflict. The mechanisms found in many
of these systems either are, or resemble, capabilities [14]:
e.g., when your mobile phone operating system lists a col-
lection of system resources (location settings, local storage,
etc.) that an application demands, your granting these privi-
leges indicates you find this set of demands reasonable, and
furthermore informs the operating system to not allow the
application access to any other resources.

Capabilities have been a sideline in operating systems re-
search for many years. Over time, they begat a particular
form of programming mechanism called the object capabil-
ity [17] (OCap), which uses programming language objects
to represent capabilities. In an OCap framework, there are
no global privileged resources—whether systems resources
such as disks and networks, or program-defined ones such as
confidential data structures. Instead, all access is provided
through explicit granting of authority in the form of a ca-
pability object, whose methods represent operations on the
privileged resource. This property is called the absence of
ambient authority [16]; most programming languages vi-
olate it by providing static and global variables, through
which they expose traditional systems resources (though in
some languages, auxiliary mechanisms such as class-loaders
can be used to obtain some degree of confinement). Run-
time systems can also expose resources through the manu-

facture of object references; if this is disabled, the only way
for one object to become aware of another is for the for-
mer to be given a reference to the latter. Objects can become
aware of one another through a handful of mechanisms such
as parameter-passing, lexical closure, inheritance, and so on.
We abstract over these different mechanisms and (with slight
abuse of standard OCaps language) refer to all these pro-
cesses collectively as introduction. An object’s net authority
is thus the transitive closure of the (methods of the) capabil-
ities to which it has been introduced.

Building on this linguistic foundation, OCap program-
mers expect modules to obey the principle of least authority
(POLA) [21]. That is, a module must expect no more author-
ity than it requires to accomplish its task. Because a mod-
ule cannot obtain capabilities through other means (per the
OCap assumptions), the user of the module can confidently
bound what privileges it may use (and hence, potentially,
abuse). OCaps are furthermore effective at thwarting con-
fused deputy [7] attacks, because the capability is both a des-
ignator of an object and the authority to use it; attacks occur
when these tasks are separated.

Curiously, though OCaps derive from a principle (POLA)
usually associated with security, and their use addresses cer-
tain security problems, the reasoning that leads to OCaps
is independent of security per se. Instead, POLA can be
viewed as analogous to Parnas’s principle of information
hiding [18]: just as information hiding can be regarded as
“need to know”, Crockford labels POLA as handing out au-
thority only on a “need to do” basis [17, page 72]. A module
that demands more capabilities than its user expects is either
being sloppy or mis-representing its purpose; in either case,
a user should proceed with caution or reject the module.

In this paper, we examine how contemporary modular-
ity methods interact with capability-based design, as em-
bodied by POLA. Inherent to the notion of capability-style
security (and indeed to most security mechanisms) is the
ability to “draw boxes”, and then argue how the content of
the box cannot harm, or be harmed by, what lies outside it.
Modern “boxes” include modularity methods such as aspect-
oriented programming, feature-oriented programming, and
other responses to weaknesses of traditional object-oriented
programming. It is therefore instructive to consider how they
fare in a POLA light.

From a POLA perspective, is easy to dismiss of many
typical aspect-oriented programming mechanisms [10]. The
point of weaving [11] is to run a program fragment in a
context other than that in which it was defined. The wo-
ven program thus inherits the power of the location where
it was injected. This directly violates the abstraction bound-
aries of the point of injection, and lets the aspect access
capabilities that arguably were not granted to it explicitly
(indeed, this is virtually the definition of a confused deputy
attack!). Interfaces for aspect-orientation might help in this
regard [1, 12, 13].

if printf open-tcp · · ·
Interpreter screen network
Type checker
Pretty printer screen screen screen
· · ·

Figure 1. Features and capabilities in a suite of program-
ming language tools

Feature-oriented programming [20] (FOP), in contrast,
explicitly defines and composes “boxes”. A feature is com-
monly regarded as a piece of system functionality that a user
can identify. In FOP, the unit of modularity is the feature;
each module implements, roughly, a feature, and the collec-
tion of modules corresponds to the features expected by the
system’s requirements. This alignment of modules with re-
quirements makes it possible to easily customize an applica-
tion by composing just those features that a particular user
desires. Each composition then results in a different system,
so FOP naturally leads to product-lines of systems. This con-
nection to product lines underlies FOPs claims to support
scalable software development [5].

2. An Inherent Conflict?
To concretize features and capabilities, consider a suite of
tools that implement a programming language. Suppose
each tool is a feature. Each tool must handle (as appropriate)
each construct that exists in the language. Figure 1 shows
the capabilities that would be needed across common lan-
guage constructs and tools. For purposes of this paper, the
key observations from this table are

• Different features require different capabilities. The pretty-
printer only requires access to the screen; the interpreter
needs both the screen and the network; the typechecker
doesn’t need any external resource.

• Different tools require different capabilities across con-
structs. The interpreter only needs write access to the
screen to implement printf; that capability is irrelevant
for the other constructs shown.

This table captures the essence of the different views of
modularity between features and capabilities. FOP roughly
views each row of this table as a module. As the cells within
each row may require different capabilities, however, OCaps
could demand finer-grained modules, perhaps as small-
grained as individual cells. That FOP modularizes around
rows as opposed to columns of the table is not relevant here
(since different cells in the same column also have differ-
ent capabilities). The point is that OCaps seeks a modular
structure with strong access-control guarantees, FOP seeks
a modular structure that enables large-scale, plug-and-play
system construction, and these two would frame modules
somewhat differently in this example.

Different Perspectives on Modularity Features and OCaps
modularize systems differently because they view modular-
ity as solving different problems. Features view modules as a
way to enable flexible and scalable construction of families
of products. OCaps view modules as a way to ensure that
a composed program has no violations of least privilege. A
key goal in FOP is to allow third parties to add new fea-
tures to existing products without modifying existing code,
while OCaps enable code from untrusting providers to com-
pose without either party being able to infiltrate the other be-
yond the bounds specified in the interface. These goals are
not identical, and indeed the FOP view is an expansive one
while the OCap view is inherently untrusting.

Incompatibility Are these two styles compatible? Perhaps
not: this example already illustrates a tension. To ensure least
authority, the individual portions of the interpreter would
each consume just the capabilities (including none) they re-
quire. However, that requires the client linking the features
to deal with a potentially large number of small components.
By packaging these up into a single component (namely the
interpreter), the client linking the features gains scalabil-
ity by having fewer and higher-level components to content
with. In Batory’s phrase [5], this packaging improves scal-
ability. In return, however, the client must now grant all the
capabilities to the interpreter as a whole and hope that it de-
multiplexes these properly without granting excess authority
to any one fragment. Miller refers to this as the “nested plat-
forms” problem [17, §22.1].

In short, just as in social structures, scalability appears to
demand delegation and diffusion of authority. That is, while
having lots of little components makes it possible to assign
precisely the least authority to each one, this over-burdens
the programmer who is responsible for linking them to-
gether. By “chunking” the linking, the programmer can deal
with significantly fewer, higher-level pieces (the features);
but these now require the aggregate of authority required by
the components contained inside them. The programmer has
to make an unsavory choice between an excessive number
of modules with reasonable authority each or a reasonable
number of modules with excessive authority each.

3. OCaps Discipline in a FOP System:
A Case Study
Is this incompatbility a problem in practice? To gauge the
extent to which FOP developers already follow an OCaps
discipline, we studied an exemplary application built using
FeatureHouse [2]. FeatureHouse is a cross-language frame-
work for FOP; in FeatureHouse, program artifacts are rep-
resented as structured trees, and composition is the act of
merging trees.

We hasten to note that the point of this section (and indeed
of the whole paper) is not to study FeatureHouse in detail,
but rather to ask how well existing programs already meet
the POLA principle. If they do well, perhaps the theoretical

incompatibility is only that, and not a problem in practice.
If they do poorly, however, there remains the open question
of whether simple refactoring would address the problem, or
whether the topic demands more foundational research.

3.1 Assessing Adherence to OCaps Discipline
We first present a simple classification we have found useful
when evaluating FOP software for its adherence to OCaps.
We classify each feature/capability pair thus:

• Required Capabilities: A capability c is required for a
feature f (denoted Req(f ,c)) if f is expected to receive c
according to the program requirements.

• Given Capabilities: A capability c is given to feature f
(denoted Given(f ,c)) in a program if some part of f has
capability c within the program’s implementation.

• Used Capabilities: A capability c is used in feature f
(denoted Used(f ,c)) if some part of f actually uses c
within the implementation.

Unlike given and used capabilities, which can be computed
from the source code, required capabilities are hard to pin-
point: a program may have different implementation options,
each of which depends on different capabilities. We choose
to consider the maximal plausible requirements: this will
make least-privilege violations out of given capabilities that
have no plausible use in a feature.

The following table characterizes combinations of the
labels relative to the goals of capability systems. We do not
include the two combinations in which Used(f ,c) is true but
Given(f ,c) is false because it is not possible for a system to
use a capability that is not available to it.

Category Req(f ,c) Given(f ,c) Used(f ,c)
No error false false false
No error true true true
LPV false true true/false
Diff Impl true true/false false

Cases in which all labels have the same value do not flag any
errors relative to capabilities. Least-privilege violations, de-
noted LPV in the table, arise when a feature has been given a
capability that it does not plausibly need. Whether a feature
uses an unrequired capability is not relevant: just because
one implementation of a feature does not exploit an unneces-
sary capability, another implementation (perhaps by a third
party) might. Cases in which a feature does not use a plau-
sible capability are not necessarily errors, but indicate that a
programmer may have found a different way to implement
the system than envisioned in the requirements. In particular,
a programmer might choose to virtualize the implementation
(e.g., consuming a capability for the file system but actually
using an in-memory store instead of the persistent store).

Figure 2. Feature model for the Notepad application. The propositional expressions in the picture shows that FormatRaw and
FormatStyled depend on TextRaw and TextStyled respectively. Other dependencies between modules have been suppressed to
keep the example small.

3.2 The Case Study
FeatureHouse presents 22 sample projects that have been
written in a feature-oriented style in Java (it has additional
projects written in other languages, such as Alloy, C, C#,
Haskell, JavaCC and UML). We chose a Notepad applica-
tion, which is both simple enough to immediately under-
stand and rich enough to have interesting resources to pro-
tect. Though we studied the entire application, here we focus
on a few representative features that illustrate our point.

Notepad implements a canonical note-taking application.
Figure 2 shows a feature model of the entire Notepad product
family. The primitive application offers a main window as a
container for other components of the application. The ap-
plication requires a Text feature, which provides a text area
for editing (but not common file-menu operations). There
are also numerous optional features. For this example, we
will use features for a Clipboard (cut, copy, and paste), Find
(search for text), and Undo. Features that we will not con-
sider include text formatting, menubars, and toolbars.

Our goal is to identify whether Notepad has any least-
privilege violations that trace back to its feature-oriented ar-
chitecture. Recall the term introduction (Section 1) for the
process by which one object comes to have a reference to
another object. As Section 3.1 shows, least-privilege viola-
tions in a program arise from introductions that grant more
access than necessary. Identifying the source and necessity
of the introductions in a program is the first step to checking
whether it maintains capability discipline.

For our sample features, we would expect that Find needs
to read the contents of the text area and to highlight found
terms. Clipboard needs to read, write, and delete from the
text area. Undo will read and write to the text area. None of

these features need access to each others’ data structures, nor
does the text area have need to know about these features.

At the implementation level, the Text feature adds a text
area to the notepad, implemented as an instance of Java’s
JTextPane (a standard library class). The feature creates
the area, adds it to the main application window, and endows
it with a getter. The Text feature also creates an object that
holds the callbacks associated with actions a user can take
through the Notepad. The Find and Clipboard features add
actions, but do not add to the notepad itself. The Undo fea-
ture adds an UndoManager (a standard Java library object) to
the Notepad class rather than use the existing infrastructure
for registering actions. For reference, Appendix A shows the
portion of the source code for these features that is relevant
for this paper (though a reader should be able to follow our
arguments without reading the code).

Within this implementation, we find several least-privilege
violations. Representative examples of these include:

• Find has write access to the text area. Find gets a refer-
ence to the text area so it can search the text, but is ac-
tually given all of the text area’s methods. Under OCaps
discipline, Find should have been given a reference to
an object that provides only the search method that Find
needs.

• Undo has access to the Actions object, even though it
does not use it. This leakage arises from FeatureHouse’s
composition technique. Given an ordered list of features

FeatureHouse Base Text Undo Find Clipboard

FeatureHouse creates a product by concatenating the
contents of identically-named classes across the features.
This approach makes all objects defined in one feature

available to all other features in the same product. Since
there are no class boundaries between features, even pri-
vate variables in one feature are available to the others.

• UndoAction has access to the entire Notepad, even
though it only needs access to the Notepad’s UndoManager
and one other specific field that the Undo feature itself
added to the Notepad. This leakage arises from a poor
architectural decision with the Notepad class. It could
easily have been avoided by passing the two required
fields rather than the entire Notepad object as arguments.

The first two problems lead to pervasive violation of least
privilege. We manually analyzed the entire Notepad feature
suite from Figure 2. To perform this analysis, we had to
define the required capabilities, which we did by adhering
closely to the principle of least privilege. Our analysis found
200 least-privilege violations that trace to the first issue and
373 that trace to the second. The third problem does not
show up in required capabilities because the unnecessary
object is of a class that is limited to the implementation
and does not manifest in the requirements (which perhaps
makes its availability even more insidious). Note that every
violation is an opportunity for a feature implemented by a
potentially untrusted third-party to obtain powers it should
not have had.

We find it interesting that the Notepad features introduce
relatively few methods of their own. Rather, they rely heav-
ily on methods that are already part of existing Java classes
(such as JTextPane and UndoManager). This is relevant to
our discussion because it affects how we should think about
required capabilities. We stated that Clipboard needs read
and write access to the text area. In this implementation,
however, Clipboard only uses existing read and write meth-
ods on the text area—it did not use the text area itself (other
than as a route to these methods). Ideally, Notepad should
introduce only these methods (or functions)—rather than the
entire text area—to the Clipboard.

Wrapper objects are an effective way to limit visibility of
existing methods. However, passing entire objects is easy;
implementing wrappers is painstaking in Java because of
the limitations of the nominal type system. As a result,
programmers will be tempted to pass entire objects even if
this approach leaks capabilities. The Notepad authors simply
followed standard Java practices; unfortunately, those are not
always consistent with OCaps discipline (and arguably, by
extension, good modularity).

3.3 Feature-Aware Access Modifiers
Acknowledging that FOP may need to limit access to vari-
ables across features, some of the researchers behind Fea-
tureHouse have proposed a set of access-modifiers unique
to features [3]. In particular, they proposed the following
modifiers (usable in the same places as standard Java pub-
lic/private/etc modifiers):

• feature: limits access to the feature in which the vari-
able is defined.

• subsequent: limits access to the feature containing the
variable and all features composed subsequently (on the
command line).

• program: the variable is available globally, as with the
standard public modifier.

These modifiers would have limited value in limiting least
privilege. Sometimes, one feature builds on another; these
cases would require the subsequent modifier, which would
leak data to any other features that happened to be included
later in a composition. This approach also does little to
address problems due to failure to wrap objects in more
restricted interfaces.

3.4 Other Approaches to FOP
There are, of course, numerous other approaches to FOP,
which are worth studying. We simply note that FOP as rep-
resented by tools like FeatureHouse appear to be somewhere
in the middle of a spectrum in their ability to incorporate
OCaps. Using annotative approaches [9] to FOP seems even
less likely to be fruitful because of their invasiveness, which
would enable feature code to obtain access to ambient capa-
bilities just as with aspects.

While FeatureHouse separates features in its front-end
language, its composition technique of syntactically merging
code across feature boundaries is a distinct weakness with
respect to preserving modular separation. As a result, even
with well-designed interfaces, the resulting code still suffers
from leakage of authority. However, the critique in our case
study does not depend on this property (which is obvious,
and might anyway be mitigated by using a different language
such as Joe-E [15], a capability-safe version of Java).

Unlike FeatureHouse, AHEAD [4] (in “mixin”, as op-
posed to “jampack” mode) does erect boundaries between
features using subclassing. This in turn limits the scope of
private variables to the feature in which they were defined.
This obedience to source modularity, which is also found in
other systems such as those of Prehofer [20] and Findler and
Flatt [6], is an important step towards preventing unwanted
comingling of code and hence the leakage of authority.

4. A Route Forward: Verified Demultiplexing
We repeat the main insight from earlier: scalability appears
to demand delegation and diffusion of authority. To use FOP,
a programmer is effectively forced to hand over a large
set of capabilities to some features, expecting them to be
redistributed internally using POLA.

This expectation should be captured by an appropriate in-
terface specification that makes clear how the provided ca-
pabilities should be distributed internally, and furthermore
(presumably) that the feature code in the interstices is it-
self not supposed to use any of them. The interface would

take the form of access-control rules that dicate how sub-
components receive capability objects, but might also in-
clude some integrity and information flow rules that dictate
flows that are prohibited to avoid attacks through colluding
sub-components. Writing such specifications somewhat di-
minishes the scalability benefits of features, but this appears
an unavoidable trade-off, and hopefully these specifications
do not need to be written very often.

Given such specifications, a good deal of research in
language-based computer security deals with how one can
actually enforce these expectations on bodies of code. En-
riching a type system with this verification power, for in-
stance, makes it easier to integrate such checking into the de-
velopment cycle. By using languages or programming sys-
tems endowed with such verifiers, the composer of features
can thus be confident that the demultiplexing of capabilities
is happening in a trustworthy fashion, and that the use of
features is not inhibiting the provision of security.

5. Perspective
This paper asks whether increments designed around user-
identified functionality, which covers FOP and also aspects,
are compatible with capability discipline. Capabilities en-
force least privilege. Identifying idioms for programming si-
multaneously with feature-like constructs and security con-
cerns such as least privilege is an important area for future
research. In particular, our work to date raises the following
observations and research questions:

• Formal modules, with checked and enforced interfaces,
are critical to preventing least-privilege violations. The
FOP community is actively debating whether features
should be captured in formal modules [8]. Our observa-
tions demand that those who argue against formal inter-
faces explain how they can provide security guarantees
without them, or why security guarantees do not apply in
their context.

• One argument against features as modules is that features
sometimes add very small amounts of code (a couple of
lines). Formal interfaces on these “micromodules” can
seem like overkill. Proponents of micromodules need to
weigh the arguments in favor of these fragments against
the corresponding leakage of authority.

• The alternative to preserving modularity in the composed
system is to obtain its benefits through alternate means.
For instance, it may be possible to devise type systems,
static analyses, and so on that bless individual feature
modules in such a way that even textual composition of
such modules will not result in privilege leakage. It is
worth noting that such textual analyses will effectively be
implementing a modularity mechanism such as language-
based sandboxing [19].

• We have argued that OCap discipline may be too rigid
for features. If we relax that discipline, what other princi-

ples can provide design guidelines? One possibility is to
incorporate threat modeling and align modules with trust
boundaries. The correlation between feature boundaries
and trust boundaries has not been studied in the litera-
ture, and appears to be a promising direction in the study
of modularity.

It is also worth remembering that least privilege is itself
a relative notion. It must be defined relative to purpose. For
instance, an interface might require or provide more than the
module’s pure functionality seems to demand. These more
expansive interfaces might support debugging, performance-
tuning, future-proofing, etc. Are these violation of POLA?
Not necessarily: it may just mean that the least privilege of
the component amounts to more than just its current func-
tionality. In other words, POLA is still a guideline open to
multiple interpretations, and these interpretations will de-
pend on the goals of various components.

In conclusion, with features and capabilities each target-
ing a real, pressing software concern, we cannot ignore the
tension between them. We look forward to ongoing discus-
sions about the tradeoffs between these approaches and tech-
niques for making them interoperate.

Acknowledgments
This work is partially supported by the US National Science
Foundation. We thank Mark S. Miller for many valuable
conversations over the years. We are especially grateful to
Kevin Sullivan for his shepherding of this paper. His detailed
and thoughtful questions and comments greatly helped us
clarify our presentation.

References
[1] ALDRICH, J. 2004. Open modules: Modular reasoning

in aspect-oriented programming. In Foundations of Aspect-
Oriented Languages. 7–18.

[2] APEL, S., KASTNER, C., AND LENGAUER, C. 2009. Feature-
house: Language-independent, automated software composition.
In Proceedings of the 31st International Conference on Software
Engineering. ICSE ’09. IEEE Computer Society, Washington,
DC, USA, 221–231.

[3] APEL, S., KOLESNIKOV, S., LIEBIG, J., KÄSTNER, C., KUH-
LEMANN, M., AND LEICH, T. 2010. Access control in feature-
oriented programming. Science of Computer Programming.

[4] BATORY, D. 2004. Feature-oriented programming and the
AHEAD tool suite. In International Conference on Software
Engineering. 702–703.

[5] BATORY, D. S., SARVELA, J. N., AND RAUSCHMAYER, A.
2004. Scaling step-wise refinement. IEEE Transactions on
Software Engineering 30, 6, 355–371.

[6] FINDLER, R. B. AND FLATT, M. 1998. Modular object-
oriented programming with units and mixins. In ACM SIGPLAN
International Conference on Functional Programming. 94–104.

[7] HARDY, N. 1988. The confused deputy (or why capabilities
might have been invented). ACM SIGOPS Operating Systems
Review 22.

[8] KÄSTNER, C., APEL, S., AND OSTERMANN, K. 2011. The
road to feature modularity? In Proceedings of the International
Workshop on Feature-Oriented Software Development (FOSD).

[9] KÄSTNER, C., APEL, S., THÜM, T., AND SAAKE, G. 2011.
Type checking annotation-based product lines. ACM Transac-
tions on Software Engineering and Methodology (TOSEM).

[10] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN,
M., PALM, J., AND GRISWOLD, W. 2001. An overview of As-
pectJ. In European Conference on Object-Oriented Program-
ming. 327–353.

[11] KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA,
C., LOPES, C. V., LOINGTIER, J.-M., AND IRWIN, J. 1997.
Aspect-oriented programming. In European Conference on
Object-Oriented Programming. 220–242.

[12] KICZALES, G. AND MEZINI, M. 2005. Aspect-oriented pro-
gramming and modular reasoning. In International Conference
on Software Engineering. 49–58.

[13] KRISHNAMURTHI, S. AND FISLER, K. 2007. Foundations
of incremental aspect model-checking. ACM Transactions on
Software Engineering and Methodology 16, 2.

[14] LEVY, H. M. 1984. Capability-Based Computer Systems.
Digital Equipment Corporation.

[15] METTLER, A., WAGNER, D., AND CLOSE, T. 2010. Joe-E:
A security-oriented subset of Java. In Network and Distributed
System Security Symposium.

[16] MILLER, M., YEE, K.-P., AND SHAPIRO, J. Capability
myths demolished. Available online at http://srl.cs.jhu.
edu/pubs/SRL2003-02.pdf. Last accessed Sept 23, 2011.

[17] MILLER, M. S. 2006. Robust composition: Towards a unified
approach to access control and concurrency control. Ph.D.
thesis, Johns Hopkins University.

[18] PARNAS, D. L. 1972. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM 15, 12,
1053–1058.

[19] POLITZ, J. G., ELIOPOULOS, S. A., GUHA, A., AND KR-
ISHNAMURTHI, S. 2011. ADsafety: Type-based verification of
JavaScript sandboxing. In USENIX Security Symposium.

[20] PREHOFER, C. 1997. Feature-oriented programming: A fresh
look at objects. In ECOOP’97—Object-Oriented Programming,
11th European Conference, M. Aksit and S. Matsuoka, Eds. Vol.
1241. Springer, Jyväskylä, Finland, 419–443.

[21] SALTZER, J. H. 1974. Protection and the control of informa-
tion sharing in Multics. Communications of the ACM 17, 7.

Text/Base
1 class Notepad {

2 public Actions actions = new Actions(this);

3 private JTextPane textPane;

4

5 public Notepad () {

6 textPane = new JTextPane();

7 getContentPane().add(textPane);

8 }

9

10 public JTextComponent getTextComponent() {

11 return textPane;

12 }

13 }

14

15 class Actions {

16 Notepad n;

17

18 public Actions(Notepad n) {

19 this.n = n;

20 }

21 }

Figure 3. Essence of the Text feature in FeatureHouse

Clipboard
1 class Actions {

2 public void cut(){

3 n.getTextComponent().cut();

4 }

5

6 public void copy(){

7 n.getTextComponent().copy();

8 }

9

10 public void paste(){

11 n.getTextComponent().paste();

12 }

13 }

Figure 4. Essence of the Clipboard feature in FeatureHouse

A. Notepad Feature Code
This appendix presents fragments of the Notepad features

that are relevant to our discussion of capabilities along with
an example of how they appear in composition. Each feature
consists of up to two class definitions. The Notepad class
contains the structural elements of the notepad application
(text areas, menu bars, etc); the Actions class contains
methods for the callbacks that are executed when the user
selects from menus, toolbars, or other GUI elements. Some
features, such as Clipboard and Find, add new actions but no
new structural elements.

The Text feature (Figure 3) creates a text area (line 6) and
adds it to the main application window (line 7). It also adds
a getter method for the private textPane variable (lines 10-
12). This feature itself adds no actions; it merely connects a
Notepad instance to an Actions class (lines 17-18).

Find
1 class Actions {

2 public void find() {

3 findWord = JOptionPane.showInputDialog("Type the word to find");

4 findIndex = n.getTextComponent().getText().indexOf(findWord);

5 if (findIndex == -1) {

6 JOptionPane.showMessageDialog(null,"Word not found",...);

7 } else { selectFound(); }

8 ...

9 }

10

11 public void findNext() { ... }

12

13 private void selectFound() {

14 n.getTextComponent().select(findIndex, findIndex + findWord.length());

15 }

16 }

Undo
1 class Notepad {

2 UndoManager undo = new UndoManager();

3 UndoAction undoAction = new UndoAction(this);

4

5 public Notepad() {

6 getTextComponent().getDocument().addUndoableEditListener(... undo.addEdit() ...);

7 }

8 }

9

10 class UndoAction extends AbstractAction {

11 Notepad notepad;

12

13 public UndoAction(Notepad notepad){

14 this.notepad = notepad;

15 }

16

17 public void actionPerformed(ActionEvent e) {

18 notepad.undo.undo();

19 }

20 }

Figure 5. Essence of the Find and Undo features in FeatureHouse

Clipboard (Figure 4) introduces three actions—cut, copy
and paste—that interact with the operating system’s clip-
board. Each action simply calls the relevant method of the
text area object (lines 3, 7 and 11). The Find feature (Fig-
ure 5) adds two action methods (find and findnext) which
execute when the user clicks on buttons that Find adds to the
toolbar and menubar (these additions are not shown). The
find method gets the search string from the user through
a dialog box (line 3), then passes the search string to the
text area’s search methods (line 4). Find’s actions use the
selectFound method to highlight the strings found in the
text area using the text area’s methods (line 14).

Unlike the other features, Undo (Figure 5) defines its own
action classes (UndoAction and RedoAction) rather than
extend the existing Action class. It also adds an instance of

UndoManager, a standard Java class that manages undo/redo
operations (line 2). When the user chooses to perform an
undo/redo operation via the toolbar or the menubar, the
undo/redo actions call the relevant methods of the undo
manager instance to handle the operation (line 17).

Figure 6 shows the Notepad class that results from the
composition of the Text and Undo features. The comments
demark which portions of the class came from each of the
features. The rest of the code has been omitted, as it does
not add relevant detail to the example.

class Notepad

//FROM TEXT-BASE

public Actions actions = new Actions(this);

private JTextPane textPane;

//TEXT

//FROM UNDO

UndoManager undo = new UndoManager();

UndoAction undoAction = new UndoAction(this);

RedoAction redoAction = new RedoAction(this);

//UNDO

public Notepad () {

//FROM TEXT

textPane = new JTextPane();

getContentPane().add(textPane);

//TEXT

//FROM UNDO

getTextComponent().getDocument().addUndoableEditListener(...);

//UNDO

...

}

...

}

Figure 6. The Notepad class composed from the Text and Undo features

