
Transferring Skills at Solving Word Problems from
Computing to Algebra Through Bootstrap

Emmanuel Schanzer, Kathi Fisler, Shriram Krishnamurthi, Matthias Felleisen
Harvard Graduate School of Education, WPI Computer Science, Brown University Computer Science,

Northeastern University College of Computing and Information Science
schanzer@bootstrapworld.org

ABSTRACT
Many educators have tried to leverage computing or pro-
gramming to help improve students’ achievement in math-
ematics. However, several hopes of performance gains—
particularly in algebra—have come up short. In part, these
efforts fail to align the computing and mathematical con-
cepts at the level of detail typically required to achieve trans-
fer of learning. This paper describes Bootstrap, an early-
programming curriculum that is designed to teach key al-
gebra topics as students build their own videogames. We
discuss the curriculum, explain how it aligns with algebra,
and present initial data showing student performance gains
on standard algebra problems after completing Bootstrap.

Categories and Subject Descriptors: K.3.2 [Computers
& Education]: Computer & Information Science Education

Keywords: algebra; skills transfer; game programming

1. INTRODUCTION
Computing educators have long argued that learning to

program improves mathematics and problem-solving skills [8].
Research-based evidence for this claim has, however, been
slim. While there are notable exceptions [7], a majority of
projects that seek to improve problem-solving ability through
programming have failed to produce measured results. In-
deed, researchers versed in the computing-education liter-
ature frequently warn that programming is not known to
transfer problem-solving skills to mathematics.

Transfer of learning between domains typically requires
both deep structural connections between the domains and
explicit instruction in how to apply concepts from one dis-
cipline in the other [1, 10, 12]. Many computing projects
that target transfer to mathematical problem-solving fail to
handle one of these two requirements. This raises two chal-
lenges: can we identify specific problem-solving practices in
computing that have direct analogs to processes in mathe-
matics, and can we teach them in such a way that students
realize performance gains in mathematics?

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE’15, March 4–7, 2015, Kansas City, MO, USA.
Copyright c© 2015 ACM 978-1-4503-2966-8/15/03 ...$15.00.
http://dx.doi.org/10.1145/2676723.2677238.

This paper describes an approach to teaching program
design that measurably improves student performance on
algebra word problems from standardized mathematics ex-
ams (in the USA). Our approach is embodied in a curricu-
lum, Bootstrap, that is used in both middle- and high-school
math and computing classes across the USA. This paper
describes Bootstrap and how it simultaneously teaches stu-
dents how to design programs and solve algebra word prob-
lems. We also present preliminary data from a pre/post-
test evaluation showing student gains on algebra problems
after completing Bootstrap. Our data come from students
at multiple schools in multiple states in the USA; the stu-
dent population includes mainstream students, not only elite
ones. These data suggest that Bootstrap is achieving trans-
fer from programming to specific topics in mathematics.

2. THE CURRICULUM: BRIDGING
COMPUTING AND ALGEBRA

Bootstrap teaches students to program a videogame of
their own design using algebraic and geometric concepts.
Each game features a user-controlled avatar called the player,
a target that the player is trying to catch, a danger that the
player is trying to avoid, and a background setting in which
the game takes place. In the first lesson, students “design”
their games by choosing values for these elements. This cus-
tomization gives students ownership and investment in the
game they are trying to produce. Recent student designs
vary widely: catching candy, avoiding the lunch lady, meet-
ing aliens, collecting butterflies, etc.

Students build up their games by incrementally adding
features involving their players, dangers, and targets: dan-
gers and targets wrap-around (in side-scrolling behavior),
scores rise as the player collides with the target, and the
game ends when the player collides with the danger. The
project is carefully designed so that each game feature teaches
a particular mathematical concept. Each unit in the curricu-
lum has three integrated components: a new feature for stu-
dents to add to their games, a new programming construct or
concept needed to implement the feature, and an underlying
mathematics concept that relates to the programming con-
cept. Figure 1 summarizes the curricular structure, showing
the game features, programming concepts, and mathemati-
cal concepts addressed in each unit.

Bootstrap’s alignment with algebra is further embodied
in three aspects of our curriculum: our tools for migrating
from computations to code, the shape of code that comprises
a game program, and the process used to determine the
required computations. We discuss each in turn.

Unit Game Feature Programming Concept Math Concept
1 locating elements on screen expressions, Circles of Evaluation coordinates
2 creating text and images string and image operations domain, range, kinds of data

3–5 making moving images defining functions, examples multiple function representations:
as formulas and as tables

6 determine when game elements are
off-screen

Booleans and Boolean operators inequalities

7 responding to key-presses conditional piecewise function
8 collision detection (nothing new) Pythagorean Theorem
9 polishing games for presentation code reviews explaining math concepts to others

Figure 1: Curriculum structure: each unit introduces game, programming, and math concepts in parallel.

2.1 Diagramming Expressions:
Circles of Evaluation

Algebra teachers often struggle to help students learn or-
der of operations. Most teach monikers such as PEMDAS to
summarize the order in which operations apply in an expres-
sion, along with phrases such as “please excuse my dear aunt
sally” to help students decode the moniker. Mastering order
of operations actually requires two distinct skills: under-
standing the structure of expressions (parsing), and apply-
ing operations in order within that structure (evaluation).
Both are articulated in many state mathematics standards,
but PEMDAS focuses only on the latter.

Bootstrap begins by teaching students
to diagram expressions with a notation
that we call “Circles of Evaluation”. As-
sume a student is working with the ex-
pression 6 ∗ (4 + 5). Bootstrap diagrams
this expression as shown on the right.
Each circle names a function above the
line and lists arguments to the function
(in left-to-right order) below the line. Nested circles corre-
spond to nested expressions. Students learn how to evaluate
a circle by reducing the innermost circle to an answer, then
replacing the circle with its answer and repeating. Circles
of evaluation naturally extend beyond arithmetic to other
expressions that arise in programming (e.g., nested boolean
expressions and computations that compose images).

From Circles to Code.
Bootstrap teaches a simple process for turning circles into

syntactically-valid textual code (in a language called BSL,
a pedagogically-oriented subset of Racket). We represent a
circle in code by splitting it open (into a pair of parentheses)
and writing its content linearly inside. The function name
goes after the opening parenthesis, and the arguments fol-
low the function name in left-to-right order. Our arithmetic
circle yields the following code:

(∗ 6 (+ 4 5))

Circles of evaluation gently introduce students to formal
notation (as many blocks-based languages do), while also
drilling a challenging algebra topic. The same steps to trans-
late circles to code apply whether the circle is for an arith-
metic function, a built-in function on another datatype, or
a user-defined function. This regularity, which infix syn-
tax lacks, eases the transition from visual to textual code.
Other common representations of expressions, such as ab-
stract syntax trees, lack the visual metaphor of “opening
the circle,” which eases this transition.

Figure 2: A videogame as a sequence of frames.

2.2 Programming Algebra:
The Shape of a Game Program

Bootstrap’s next connection to algebra comes from the
programming model in which students develop their games.
Understanding this model requires a particular perspective
on how games are constructed. Figure 2 shows a game de-
composed into a sequence of frames; the decomposition re-
sembles the filmstrips that yield movies. In this game, the
player uses arrow keys to move the butterfly up and down,
aiming to land on the lily pad while avoiding the airplane.

In each frame of the game, each of the airplane, butterfly,
and lilypad is located at a specific coordinate. The coordi-
nates suffice to create the picture that corresponds to that
frame; thus, they form the underlying model that charac-
terizes individual frames (in the software engineering sense
of the term, e.g., as in model-view-controller architectures).
In a simple game in which each element moves in only one
dimension, the model simply contains three numbers.

Between frames, the coordinates of each game element
(can) change: in our example, the lilypad drifts left, the
airplane flies right, and the butterfly moves according to the
keys (if any) pressed by the human user. The amount by
which each element’s position changes between frames can
be captured in a function. For example, to move the airplane
rightwards across the sky, a simple linear function such as

f(x) = x + 5

computes a new x-coordinate for one frame from the x-
coordinate in the previous frame.

In Bootstrap, students provide images for each of their
danger, target, and player, as well as a background image
(here, the blue pond); for each game element that moves,
they also define a function (in code) that computes its new
single-dimension coordinate from its coordinate in the pre-
vious frame. The platform iteratively produces a screen-
shot with the given images, updates the positions based on
the functions and any key presses, then repeats, displaying
the sequence of screenshots as the game. The platform also
consults student-supplied functions to detect when elements

have gone off screen (after which it wraps positions to the
opposite edge) and to detect when game elements have col-
lided (to raise scores or end the game).

The following examples illustrate the code that students
write. The function (previously called f) that calculates the
new position of the airplane is called update-danger :

(define (update-danger x)
(+ x 5))

(BSL allows hyphens in function and identifier names). The
update-player function takes an additional argument: a key-
press that is used to make the player move in response to
user input. The following function moves the player 3 pix-
els up when the up-arrow key is pressed, and 3 pixels down
when down-arrow is pressed. This is an example of a piece-
wise function in mathematics. User-interactivity provides a
concrete motivation for this otherwise abstract concept:

(define (update-player y key)
(cond [(key=? key "up") (− y 3)]

[(key=? key "down") (+ y 3)]
[else y]))

An element has gone offscreen when its x-coordinate falls
outside of the screen boundaries. Bootstrap uses this func-
tion as an opportunity to practice function composition, by
having students write separate functions to check each of
the left and right edges of the screen.

(define (onscreen? x)
(and (onscreen-left? x) (onscreen-right? x)))

(define (onscreen-left? x)
(> x 0))

Contrast to Other Early Programming Models.
These code samples illustrate how Bootstrap’s underly-

ing programming model keeps students focused on algebraic
concepts. Functions are a natural and essential part of the
model, not an advanced concept. The model is also inter-
esting for what it omits relative to other early-programming
platforms. Students do not use looping constructs (such as
Scratch’s “forever” block), mutable variables, or assignment
statements. Instead, students simply write side-effect-free
functions that describe how positions (and potentially other
game attributes) change from one frame to the next. The
lack of side effects is particularly important because it re-
flects the nature of functions and variables in mathemat-
ics (see Section 4). The platform, called the World frame-
work [4], takes care of the rest.

2.3 Solving Word Problems: The Design Recipe
Bootstrap’s third connection to algebra arises from the

process that we teach students to use when designing func-
tions. Consider the update-danger function that moves the
danger 5 pixels to the right. The student is taught to follow
the following steps:

1. Write a contract, specifying the domain and range for
the function. In this case, the contract is

update-danger : number → number

2. Write examples that illustrate the expected behavior of
the function. Examples contain actual calls to the
function in BSL. Examples for update-danger include:

Figure 3: A design-recipe worksheet, showing the
process for solving word problems.

(EXAMPLE (update-danger 0) (+ 0 5))
(EXAMPLE (update-danger 5) (+ 5 5))
(EXAMPLE (update-danger 100) (+ 100 5))

3. Circle changes across the examples, give a descriptive
name to each independent change, then write a func-
tion whose parameters are the descriptive names and
whose body is the unchanging part of the example out-
put, substituting parameters for changes. This case has
one change: the function input and first operand to +:

(define (update-danger xcoord)
(+ xcoord 5))

This sequence of steps, inspired by Pólya’s work [11], is
called the Design Recipe [3]. It helps Bootstrap students
think through a function definition problem step-by-step. If
they can’t articulate the domain and range or write exam-
ples, they usually don’t understand the problem well enough
to write a correct function either. The steps thus provide
teachers a valuable diagnostic when students are stuck. We
use a paper-and-pencil worksheet (Figure 3) to reinforce
the steps: students complete these worksheets for a vari-
ety of practice functions (including some typical mathemat-
ics word problems) as well as for every function needed for
their games. Students type in and run each function that
they develop through the worksheet before moving on to the
next problem: this both tests their code against examples
and lets them see new functionality in their games.

The design recipe is much more than a guide to writing
code; it also embodies a key concept in algebra standards.
Learning standards for algebra expect students to be able
to work with different representations of functions. Three
common representations (domain/range, input-output ta-
bles, and symbolic form) have corresponding constructs in
programming (type specification or contract, test cases, and
function definition, respectively). Bootstrap helps students
work with all three of these representations, using the con-
crete context of programming to motivate when and how
each representation can be helpful in problem solving. The
fourth common representation, graphs, could also be sup-
ported in Bootstrap with more instructional time.

2.4 Deployment Status
Interest from teachers has been strong and growing rapidly.

To date, we have offered training workshops to hundreds
of teachers, most of whom are math teachers looking for
ways to help students master and appreciate mathematics.
Many work with students who typically struggle with math;
many provide anecdotal comments about student enthusi-
asm and engagement in math following Bootstrap. Several
thousand students have completed the curriculum, some in
formal classrooms and some in after-school settings.

3. EVALUATION
Our assessment finds that Bootstrap helps students gain

proficiency in certain topics in algebra. Bootstrap also helps
mathematics teachers see potential connections between al-
gebra and (some approaches to) computer science.

3.1 Teacher Perceptions
We gather feedback from teachers just after they com-

plete one of our professional development workshops, then
again after they have taught the curriculum with students
at least once. Teachers’ perceptions of the connections to
mathematics is covered in both surveys. Many of the teach-
ers who attend our workshops are primarily math teachers,
looking to use Bootstrap to help with challenges they face
in teaching Algebra I. This population does not teach Boot-
strap simply for the sake of teaching computing.

In end-of-workshop surveys of 143 teachers (collected from
June 2013 through August 2014), 101 indicated that they
taught math. 95% of these 101 teachers strongly agreed
(72%) or agreed (23%) that Bootstrap was relevant to alge-
bra. 93% strongly agreed (74%) or agreed (19%) that Boot-
strap was relevant to their own teaching. A separate survey
(of in-school teachers who had used Bootstrap) confirmed
that teachers see Bootstrap’s relevance to math after using
it: 84% (out of 32) agreed or (more often) strongly agreed
with the statement “Bootstrap is an effective curriculum for
teaching students math skills”.

3.2 Student Performance in Algebra
Our algebra-performance assessment focuses on (1) word

problems that ask students to identify domain and range,
produce input/output tables, and produce symbolic repre-
sentations, and (2) problems about function composition.
Concretely, we are testing the following hypotheses:

Hypothesis 1. Students who complete Bootstrap will im-
prove in their performance on algebra word problems and
function composition problems.

Hypothesis 2. Students who complete Bootstrap will show
more improvement in performance on algebra word problems
and function composition problems than students who did
not take Bootstrap.

3.2.1 The Assessment Exam
We use a standard pre-post design to test these hypothe-

ses. Students take a pre-test as they begin the Bootstrap
module, and a post-test of similar but different questions
after completing Bootstrap. Both tests are done on paper.
All questions are taken from standardized algebra tests in
the US state of Massachusetts (students take these tests
in their 8th grade year, roughly age 13). We extend the

Figure 4: Sample questions from Bootstrap’s assess-
ment of algebra performance. The top box shows a
word problem. The bottom box shows two problems
on function evaluation and composition.

state-exam questions on word problems (which ask only for
symbolic representations) to ask about domain, range, and
input/output examples, as those are included in state math
standards (albeit emphasized less on the exams). Figure 4
shows sample questions. There are 8 word problems and
9 function-composition questions on each of the pre- and
post-tests, with the latter appearing first.

3.2.2 Student Population and Study Logistics
The evaluation data reported here comes from comput-

ing classes at three schools: 8th grade classes at a public
middle school in Massachusetts, 8th grade classes at a pri-
vate school in Florida, and 9th grade classes at a private
school (religiously-affiliated) in Illinois. While we have data
from other schools (that show similar trends), we do not re-
port them here: each has either too few matched pre- and
post-tests, too few students for significant comparison, or
insufficient IRB approval for publishing results.

Each of the teachers had completed a professional devel-
opment workshop on Bootstrap. Some gathered data the
first time they taught the module, while others had taught
it once or twice before gathering data. Students in all classes
had 30 minutes to work on each of the pre- and post tests.
The same tests were used across all of the classes.

3.2.3 Data Analysis
We present data from a total of six classes: two from the

school in Massachusetts, three from the school in Florida
(one a control group that had not taken Bootstrap, labeled
“Cntrl” in the tables), and one from the school in Illinois. All
classes from the same state were taught by the same teacher
to students at the same grade level. We present one table on
each of function composition and word problems. In each ta-
ble, the reported pre- and post-test score are averages across
all students. In computing significance, however, pre- and
post-test scores were matched for each student (rather than

Class # Students Pre-test Post-test Change
MA-fall 26 2.31 6.85 197%
MA-spring 32 2.56 5.53 116 %
FL-1 25 2.00 3.12 56%
FL-2 25 1.80 3.72 106%
FL-Cntrl 26 2.62 3.12 19%
IL 15 4.33 6.53 51%

Table 1: Pre/post-test scores on problems about
function application and function composition.

Class # Students Pre-test Post-test Change
MA-fall 26 0.62 4.00 550%
MA-spring 32 1.28 3.00 134%
FL-1 25 0.80 1.72 115%
FL-2 25 0.92 1.96 133%
FL-Cntrl 26 1.54 0.81 -47%
IL 15 2.00 5.53 177%

Table 2: Pre/post-test scores on word problems.

averaged across the class), allowing us to use a two-tailed
t-test to compare outcomes at the student level. Significant
(p<0.02) gains in both function composition and word prob-
lems were found for all classes that used Bootstrap with the
exception of the IL class, whose small sample size prevents
us from making significance claims for the reported gains.

Table 1 reports on student performance on questions re-
lated to function application and function composition; sam-
ples of these questions appear in the lower half of Figure 4.
Students earned 1 point for each problem that they answered
correctly. On the per-student two-tailed t-tests, gains were
significant at ranges from .003 for the Florida-1 class to
2.84e11 for the spring Massachusetts class.

Table 2 reports student performance on word problems; a
sample question appears in the top half of Figure 4. Students
earned 1 point for each problem on which they provided
a correct function in symbolic form (part c in the sample
question). On the per-student two-tailed t-tests, gains were
significant at ranges from .01 for the Florida-2 class to 8.84e8
for the fall Massachusetts class.

The word-problem data reported in this paper omits stu-
dent performance on the domain/range and input/output
parts of the questions. State assessment exams do not in-
clude these parts, and algebra teachers often de-emphasize
these representations (despite their inclusion in state stan-
dards). Reporting on only the symbolic form therefore gives
us a more realistic comparison to control-group students
who have not had Bootstrap. When including the results
for other representations, Bootstrap students displayed far
higher gains than their control group counterparts. This
may speak more to the results of de-emphasizing those rep-
resentations in traditional math instruction than it does to
strengths of Bootstrap, but the fact that Bootstrap students
were able to identify these representations on an algebra task
after seeing them solely in the programming domain may
strengthen the case for evidence of transfer.

The control group did not see significant gains in either
function composition or word problems (word-problem scores
actually dropped noticeably for this group; the teacher hy-
pothesized that the students were less motivated for the
test). We found no significant differences in pre-test scores

between the control and experimental classes in Florida, and
students in both conditions were taking the same mathemat-
ics class (concurrent with Bootstrap for the experimental
group). This suggests that Bootstrap is having an impact
beyond what students are learning in math class (perhaps
affecting engagement as well as skills).

At first glance, the average scores on these tests seem
rather low; on word problems, for example, some classes
correctly answered fewer than 2 problems on average. For
word problems, this is partly an artifact of our scoring: stu-
dents answered 3 subquestions per problem (as shown in
Figure 4), but we scored only one of these for this paper.
Students thus answered more questions than the scores re-
flect. This partly explains why scores are generally higher
on the function application and composition questions.

Time constraints are likely a significant factor. Word
problem questions follow those for function composition, and
students have only 30 minutes to complete both sections
(though they may answer questions in any order). Students
typically attempt no more than 5 of the 8-9 problems, yet
make few errors on problems for which they write an an-
swer. This time constraint—dictated by the participating
teachers—thus appears significant in these marks being low.

The performance gains from pre-test to post-test were
lower in the MA-spring courses (in both tables) than in the
MA-fall courses, despite having the same teacher leading
both classes. This is partly explained by higher pre-test
scores in the spring class. The teacher in that course hy-
pothesizes that the spring students had simply had more
coverage of mathematics in their other classes, which could
have led to higher pre-test scores.

Threats to Generalizability.
Our brief discussion of the two Massachusetts classes offers

a glimpse of the many variables that differ across offerings of
Bootstrap. Students could be taking Bootstrap within their
math class, alongside a math class (taught by the same or
a different teacher), or out of sequence with a math class.
Students vary in grade levels, prior preparation in math, and
confidence. Due to these (and other) variables, we cannot
generalize too much from these findings. Accordingly, we do
not report effect sizes and other statistical parameters.

The extra questions (on domain/range and examples) that
we add to the word problems from the state exams provide a
form of scaffolding that students would have to do on their
own on the state exams. Additional studies must explore
whether students internalize the design recipe well enough
to produce correct symbolic representations in isolation.

4. RELATED WORK
While programming has had some success at developing

other mathematical competencies [7], transfer to algebra has
been difficult to establish. Logo was designed explicitly to
teach mathematics, and many researchers have studied it as
a vehicle for algebra (e.g., [5, 6]). Pea and Kurland [9] found
no evidence of improved mathematical reasoning among stu-
dents who had been exposed to more than 30 hours of in-
struction in Logo, and later questioned the entire expecta-
tion of transfer into algebra. Clements [2] found that stu-
dents who mastered the concept of variables in Logo were
unable to apply that understanding to algebra tasks.

Recent research suggests that deep structural similarities
between thought processes in different disciplines, along with

explicit instruction in those similarities, are key components
to transfer [1, 10, 12]. Early-programming curricula typi-
cally lack clearly-articulated processes for problem solving
(such as Bootstrap’s Design Recipe), much less ones that
also apply to solving problems in algebra.

In imperative programming, the terms“variable”and“func-
tion” have different meaning than in algebra. Algebra func-
tions always return the same output for a given input (stu-
dents even use the “vertical line test” to confirm this); im-
perative functions fail this test. Similarly, an algebra vari-
able (called a “parameter” in programming) varies across
function invocations, but is constant within a given invoca-
tion. An imperative programming variable changes its value
within a function. In contrast, BSL functions and variables
behave exactly like those of mathematics. Because of this
relationship, students can trace function behavior in Boot-
strap using substitution (just as they do in algebra, thereby
reinforcing the idea), but this would produce the wrong
answer for many Logo or SNAP functions. Wright, Rich,
and Lee [14] independently deployed and assessed Bootstrap
with their own instrument. Their study, which included
middle- and high-school students, some experimental and
some control, found significant improvements in students’
understanding of variables after Bootstrap. Thomas [13]
used simple BASIC programs to convey general concepts of
algebraic variables, but not in the context of functions.

Bootstrap’s pedagogic goals differ from those of Scratch.
Scratch is designed to get students writing animation code in
a matter of minutes: it focuses on rapid engagement and en-
couraging exploration. Bootstrap was designed to reinforce
algebra: students write their first animation later than with
Scratch, but having already covered key topics in mathe-
matics standards. Its engagement is achieved differently:
by having students design their games at the very beginning
(giving them something to look forward to and repeatedly
draw upon) and by using images (rather than arithmetic) to
practice function composition and expression structure.

Bootstrap’s Circles of Evaluation resemble the blocks that
have become ubiquitous in early programming. Clearly,
however, by the end of the curriculum students need to be fa-
miliar with textual notations. When to make the transition
from visual to textual syntax remains open. In Bootstrap,
students make the transition early (all their programming is
done in text), and this has worked smoothly across several
thousand middle-school students. Teachers still return to
Circles periodically to emphasize expression structure (e.g.,
when introducing Boolean operators, or when students are
confused). How these notations impact transfer to algebra
remains an open research problem.

5. CONCLUSION AND ONGOING WORK
Bootstrap is a computing curriculum designed to reinforce

specific learning objectives in algebra. This paper describes
three key features of the curriculum and the algebraic con-
cepts that they reinforce. Bootstrap’s programming model
and choice of programming language allow students to di-
rectly apply problem-solving processes for programming to
standard problems in algebra. We hypothesize that these
enable transfer. Preliminary data showing student perfor-
mance gains in algebra after Bootstrap is encouraging. We
continue to expand our data to include more teachers and
more control groups.

In focusing on computing concepts that tie directly and
deeply to algebra, Bootstrap also creates a gentle entry ramp
for math teachers to begin teaching computing. Many coun-
tries have efforts to vastly increase the pool of qualified com-
puting teachers, such as the CS10K project in the USA.
Bootstrap appeals to content that math teachers accept as
important, while simultaneously staying close enough to teach-
ers’ comfort zones that they are willing to bring it into the
classroom. Several hundred math teachers completed Boot-
strap professional development workshops this summer, with
post-workshop surveys showing high participant confidence
in their ability to begin teaching computing. This is an ex-
citing result in and of itself as we look to expand educational
opportunities in computer science.

Acknowledgements.
The NSF, Google, and Microsoft funded initial develop-

ment of Bootstrap. Emma Youndtsmith and Rosanna So-
bata energetically train and support teachers; Danny Yoo
built the programming environment. Rachel Mark and Chris
Burns helped create our earliest student workshops. Helpful
reviewer comments prompted clarifications in the paper.

6. REFERENCES
[1] J. Bransford and D. Schwartz. Rethinking transfer: A

simple proposal with multiple implications. In Review of
Research in Education, volume 24, pages 61–100. American
Educational Research Association, 1999.

[2] D. Clements. The future of educational computing research:
The case of computer programming. Information
Technology in Childhood Education, pages 147–179, 1999.

[3] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. MIT Press, 2001.

[4] M. Felleisen, R. B. Findler, M. Flatt, and
S. Krishnamurthi. A functional I/O system or, fun for
freshman kids. In ACM SIGPLAN International
Conference on Functional Programming, 2009.

[5] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and
C. Solomon. Programming-languages as a conceptual
framework for teaching mathematics. SIGCUE Outlook,
4(2):13–17, Apr. 1970.

[6] R. Noss. Constructing a conceptual framework for
elementary algebra through Logo programming.
Educational Studies in Mathematics, 7:335–357, 1986.

[7] R. Noss. Children’s learning of geometrical concepts
through Logo. Journal for Research in Mathematics
Education, 18(5):343–362, 1987.

[8] S. Papert. Teaching children to be mathematicians versus
teaching about mathematics. International Journal of
Mathematical Education in Science and Technology,
3(3):249–262, 1972.

[9] R. Pea and D. Kurland. On the cognitive effects of learning
computer programming. New Ideas in Psychology,
2:137–168, 1984.

[10] D. Perkins. Making Learning Whole. Jossey-Bass, San
Francisco, 2009.

[11] G. Pólya. How to Solve It: A New Aspect of Mathematical
Method. Doubleday, 1957.

[12] P. J. Rich, K. R. Leatham, and G. A. Wright. Convergent
cognition. Instructional Science, 41(2):431–453, Mar. 2013.

[13] M. O. J. Thomas. A conceptual approach to the early
learning of algebra using a computer. PhD thesis,
University of Warwick, 1988.

[14] G. Wright, P. Rich, and R. Lee. The influence of teaching
programming on learning mathematics. In Society for
Information Technology & Teacher Education
International Conference, 2013.

