Prototyping Formal Methods Tools:
A Protocol Analysis Case Study

Abigail Siegel, Mia Santomauro, Tristan Dyer,
Tim Nelson, and Shriram Krishnamurthi

Computer Science Department, Brown University, Providence, RI, USA

Abstract. Modern-day formal methods tools are more than just a core
solver: they also need convenient languages, useful editors, usable vi-
sualizations, and often also scriptability. These are required to attract a
community of users, to put ideas to work in practice, and to conduct eval-
uations of the formalisms and core technical ideas. Off-the-shelf solvers
address one of these issues but not the others. How can full prototype
environments be obtained quickly?

We have built Forge, a system for prototyping such environments. In
this paper, we present a case-study to assess the utility of Forge. Con-
cretely, we use Forge to build a basic protocol analyzer, inspired by the
Cryptographic Protocol Shape Analyzer (CPSA). We show that we can
obtain editing, basic visualization, and scriptability at no extra cost be-
yond embedding in Forge, and a modern, domain-specific visualization
for relatively little extra effort.

1 Introduction

Formal methods are (finally) surging in popularity, including numerous domain-
specific tools, even of industrial origin [2,9,18,8,7,41,46]. This suggests that
there are many new tools that people might want to build; as exposure grows,
so will the number of tools. But there’s a long road from a formalism to a tool.
Researchers need to quickly build prototypes that can be experimented with and

refined (and perhaps even turned into a bespoke tool).

Many tools [36,29, 32,5, 33, 38, 28, 44] already layer a domain atop a model-
finder like Alloy [23], Alloy’s core engine Kodkod [54], SMT, or SAT. While these
are wonderful as embedded solvers, they are only the beginning, not the end, to

building a useful tool. Some additional concerns include:

These concerns are not academic. Tools benefit from user communities. While
early adopters will use almost any interface, as communities grow, they expect

the development environment (IDE) experience;

translating the domain-specific surface input language;

visualization of the output;

perhaps even domain-specific and interactive output visualization; and
extensibility and scriptability.

all the standard modern conveniences.

Independent of community growth, our formalisms benefit from (and need)
evaluations with users, especially because these can cough up unpleasant sur-
prises [11]. But to perform such evaluations, we must equip them with at least
minimal usable interfaces. Otherwise, our studies will be studying the (poverty
of the) interface, not the formalism and its consequences.

Our response to this problem is a new framework, Forge! (the name is a
tribute to Alloy), that enables researchers to quickly prototype tools. Forge is
based on the language-oriented programming (LOP) principle [16] of the Racket
programming system. That is, Racket is a system (and language) designed for
building (programming) languages. The resulting languages can be used from the
DrRacket programming environment [17] or with external environments (such
as Visual Studio Code) using the Common Language Interface. Forge provides
the Kodkod [54] and Pardinus [10] solvers. It also incorporates the Sterling [15]
visualizer, which enables domain-specific visualizations. Finally, domain-specific
programs can be scripted using the Racket language.

This paper presents a case study that exercises these aspects of Forge. Con-
cretely, we will use Forge to build a prototype analyzer for cryptographic pro-
tocols, inspired by Joshua Guttman’s Cryptographic Protocol Shapes Analyzer
(cpsA) [12]. This prototype was largely executed by a pair of undergraduates
(the first two authors) as part of a course project (while taking a regular course
load). We believe that this demonstrates the potential utility of frameworks like
Forge, and hope that this work prompts further development to support end-to-
end prototyping of formal tools.

2 End-To-End Language-Oriented Modeling

The key philosophy of Forge lies in extending the idea of LOP to language-
oriented modeling. We illustrate this process in Figure 1, which is organized by
tiers according to the different user perspectives involved. For concreteness, we
specialize the presentation to our specific crypto-analysis case study.

Atop the pre-existing Forge engine, Tool Authors (in this case study, the un-
dergraduate lead authors) model their domain (the “Base spec”), define domain-
specific languages (DsLs) in Racket, the translation of those languages to Forge
constraints (#lang), and—if needed—a domain-specific visualizer (“Custom Vi-
sualization”). These enable other user perspectives: domain experts, such as
Protocol Creators, use DSLs (like CPSA’s defprotocol syntax) to specify artifacts
of interest in their domain without needing expertise in relational logic. Ana-
lysts can then phrase queries about protocol behavior. They may use Forge’s
query language, a DSL (such as CPSA’s defskeleton syntax), or both, and benefit
from domain-customized output. Others, such as students, might even bypass
the DSLs entirely and only interact with visualizations produced by others. While
a specific user may naturally belong to multiple tiers (e.g., a protocol creator
may wish to double-check their specification by viewing example executions), we
find this separation a useful way to think about different tool perspectives.

! Available at: www.forge-fm.org

Protocol Analysts |further goalsl——

defskeleton |——

[N

A

Protocol Creators defprotocol
#lang Custom
Domain Modelers & Visualization
Tool Authors Base spec .
Derived spec

Forge Developers *solverl

Fig. 1: Tiered organization of Domain-Specific Modeling in Forge. Components
that must be implemented for each new domain (e.g., our case-study prototype)
are shaded in grey. A base specification for the domain is enriched with additional
constraints generated from the domain-specific input. Results from the solver are
relayed to a custom visualizer. As the process is embedded in Racket, additional
structure can be added via scripting (not shown) from outside the core workflow.

Crucially, this process is not specific to cryptographic protocols. Any domain
that can be modeled in the relational logic of Forge (which it shares with Alloy)
is a potential target of this approach.

We now briefly step through the perspective of each user, and address cor-
responding system-design concerns raised in Section 1. As a running exam-
ple throughout, we use the Needham-Schroeder [35] asymmetric protocol with
the known (Lowe [26]) vulnerability, taken verbatim from the CPSA example
repository (https://github.com/mitre/cpsa). Concretely, this protocol describes
a three-step secret exchange between two principals (initiator and responder)
facilitated by a public-key cryptosystem.

2.1 Protocol Analysts: Custom Visualization and Queries

A concrete example of Needham-Schroeder in action might look like Figure 2,
where horizontal arrows denote the flow of messages between principals. Our
case-study prototype’s model and visualization are based on the strand-space
formalism [51], just as is CPSA. We discuss differences in logic (Section 4) and
visualization (Section 6) later, but note that our visual layout concretizes the
Dolev-Yao [13] perspective: the attacker is synonymous with the medium of
communication. Our visualizer is also interactive: users can click at any point on
the diagram to see the state of agents’ knowledge at that time. Figure 3 shows
one such report: the initiator’s knowledge before the first message is sent.

ns_init0 AttackerStrand0 ns_resp0
(agent: name1) (agent: Attacker0) (agent: name0)

{nameftext1} pubK(name0)
L LTS ———— U

{nameftext1} pubK(name0)
Timeslot1

{textOtext1} pypK (name1)
Timeslot2

{textOtext1} pypK (name1)
Timeslot3

{text0} pupK(name0)
Timeslot4

Timeslots M ___________________

{text0} pupK(name0)

Fig.2: A good execution of Needham-Schroeder. The “Attacker” strand rep-
resents the medium of communication. As the secrets (textO and textl) are
encrypted, they are learned (in this execution) by only the initiator and respon-

Rl

der. The “agent:” annotations denote which agent owns each strand.

Visual Design Considerations There are textt
many different visualizations that a tool au-
thor might create. The lowest-cost approach
would be to use the standard Alloy-style di-
rected graphs that Forge provides by default.
However, these fail to communicate domain-
specific intuitions, expose unnecessary mod-
eling details, and can become overwhelming
after a certain level of complexity is reached.
Instead, Forge leverages the Sterling [15] visualizer, which allows tool authors to
build their own custom visualizations in JavaScript. These then execute in the
browser, and benefit from the many advantages of a modern web interface.

Figure 4 shows three points in the design space of visualizing an attack on,
rather than a good run of, Needham-Schroeder:

name1
{nameltext1} 5K (name0)

Fig. 3: Detail of initiator’s knowl-
edge in the first timestep.

1. the default Alloy-style visualization, projected by timeslot and with unused
atoms removed;

2. a lightweight (roughly 100 lines of JavaScript) custom visualization; and

3. the full interactive visualizer (900 lines of JavaScript).

Note that even with some effort to clean up the display, the default visualization
is cluttered with modeling details and can be difficult to break down. While
Alloy and Sterling do provide an alternative table-based modality, these same
issues apply (with, e.g., 38 rows in the learned_times relation alone). In contrast,
the custom visualizations at least communicate some pertinent information at a
brief glance, and the full visualization provides more (e.g., agent knowledge) on
click events. Section 6 presents the visualizer in greater detail.

(a) Default Visualization (for one timeslot)

name0 name1 AttackerQ
{name1 text1} K Attackegd
Timeslot0 }
{name1 textl} pybKnameo
Timeslot1 (
{text0 text1} b pKname1
Timeslot2)
{text0 text1} pypKname1
Timeslot3 (
{textO} pubKAttacker0
Timeslot4)
{text0} pybKnameo
Timeslots (

(b) Lightweight Custom Visualization
ns_init0 AttackerStrand0 ns_resp0
(agent: name1) (agent: Attacker0) (agent: name0)

{name1text1} b pK (Attacker0)
TIMeSIOt0 I D - — - - — - o o oo

{name1text1} pubK(name0)
Timeslot1

{textOtext1} p,pK (name)
Timeslot2

{textOtext1} pubK(name1)

Timeslot3
{text0} pybK (Attacker0)
Timeslot4
{text0} pybK (name0)
Timeslots & ________ .

(c) Full Custom Visualization

Fig. 4: Three different visualizations of a concrete attack on Needham-Schroeder.
Here, the man-in-the-middle attack is realized by the initiator starting a session
with the attacker or an agent whose private key is known to the attacker.

Development Environment Building atop Racket gives us immediate recourse to
the DrRacket IDE, which comes with useful features such as error highlighting, a
Read-Eval-Print-Loop (REPL), debugging features, etc. Moreover, many other
mature editors (such as Visual Studio Code) are readily usable via a language
server interface.

Query Language Forge exposes a parenthetical query language based on the first-
order relational logic of Kodkod [54]. Generating the known attack on Needham-
Schroeder (instead of a good execution) requires only asking for scenarios where
both of the initiator’s nonce values are eventually learned by the attacker:

(in (+ (join ns_init ns_init_n1)
2 (join ns_init ns_init_n2))
3 (join Attacker learned_times Timeslot)))

-

Section 5 gives more detailed background for the identifiers used here. For now,
we observe that ns_init represents an initiator strand and that ns_init_n1 and
ns_init_n2 are relations that contain the values of each nonce variable for each
initiator. The learned_times relation represents the state of each agent’s knowl-
edge at each point in time. The values for specific strands are obtained via
relational join (i.e., lookup), as is the attacker’s knowledge across all timeslots
(the Timeslot relation). + denotes union, and in the (possibly improper) subset
relationship.

2.2 The Protocol Creator: Translating Domain-Specific Input

In cPsA’s input language, the Needham-Schroeder protocol is represented by:

(defprotocol ns basic
(defrole init
(vars (a b name) (nl n2 text))
(trace
(send (enc nl a (pubk b)))
(recv (enc nl n2 (pubk a)))
(send (enc n2 (pubk b)))))
(defrole resp
(vars (b a name) (n2 nl text))
(trace
(recv (enc nl a (pubk b)))
(send (enc nl n2 (pubk a)))
(recv (enc n2 (pubk b)))))
14 (comment "Needham-Schroeder"))

© 0 N O G A W N e

= e
N o= O

[
w

The defprotocol construct specifies the behaviors corresponding to well-behaved
protocol participants, and is the way a protocol author would describe their pro-
tocol in CPSA’s domain perspective.

CPSA also provides a defskeleton construct, which describes fragments of
execution that analysts use to search for specific protocol behaviors. For example,
the Needham-Schroeder file from CPSA’s example suite contains this skeleton:

1| (defskeleton ns

2 (vars (a b name) (n2 text))

3 (defstrand resp 3 (a a) (b b) (n2 n2))
4 (non-orig (privk a) (privk b))

5 (uniq-orig n2)

6 (comment "Responder point-of-view"))

which defines a particular search in the space of executions. Each defstrand
defines a single process executing the appropriate protocol role. The 2-tuples
(e.g. (n1 n1)) are called maplets in CPSA parlance, and bind values (skeleton
variables) to role variables in the protocol. The non-orig and unig-orig anno-
tations give constraints on how principals may behave. They enforce that these
values are freshly chosen and either never sent by a principal in decryptable form
(non-orig), or that their appearance originates on a single strand (uniq-orig).

One advantage of CPSA’s parenthetical language is that no parser is required
to process it; Racket macros can expand protocol and skeleton definitions directly
into Forge formulas. While Racket permits non-parenthetical syntaxes [16], this
underlying parenthetical layer saves domain modelers of having to construct
source by unwieldy and bug-inducing string concatenation, as often happens
when mapping to other tools. We trust that the Verified LISP [21] instantiation
of Joshua Guttman would especially appreciate this.

2.3 Scripting and Extensibility

Users at any level may wish to script analysis in Forge for their own purposes.
They might wish to numerate protocol runs for pattern mining, generate “en-
sembles” of differing runs, work with the solver iteratively [33], etc.

The core of Forge is implemented as a library in Racket. Users may work
with the logic language directly (akin to what Alloy’s UI provides), or use Forge
as a library in a larger program. While Forge is meant to be used for prototyp-
ing “solver-aided” languages, it differs from tools like Rosette [52] by sharply
separating the logic language from Racket. Thus, the engine need not be able to
reason about (e.g.) recursion or other programming constructs, although com-
putation over the logic language can still be scripted. The formula derived from
a CPSA defprotocol s-expression can be used either as a helper predicate in
the logic language or as a programmatic object in Racket. Likewise, the custom
visualization applies to both naive scenario enumeration and custom exploration
strategies [37,27,45].

Roadmap After some brief background (Section 3), this paper covers the techni-
cal heart of the prototype: the core model (Section 4), the translation from CcPsa
inputs to supplemental constraints (Section 5), and custom visualization (Sec-
tion 6), which includes graphical demonstrations on further example protocols.
We then examine performance (Section 7), summarize related work (Section 8)
and conclude with a discussion of lessons learned (Section 9).

3 Relational Model Finding

Model-finding tools find concrete solutions that satisfy a given set of declara-
tive constraints. Relational model-finders, of which Alloy [23] is an especially
popular example, take input in a relational constraint language and produce
relational structures as output. Alloy’s core engine, Kodkod [54], translates in-
put constraints into boolean logic and then invokes an off-the-shelf SAT-solver.
There are various enhancements to Kodkod, such as Pardinus [10], which Forge
uses directly. However, since all these derive from Kodkod, we will disambiguate
by using it as our exemplar when we speak of Forge’s solver engine.

We borrow from Milicevic [33] and others by calling the input to Kodkod a
specification, rather than the broader Alloy community’s use of “model”. Using
“model” in this way would conflict with the fact that, in a mathematical context,
the term describes an interpretation for a (relational) language—which is the
type of a model-finder’s output, not its input.

4 Modeling Protocol Executions

Our base specification provides a generic framework into which individual pro-
tocols and skeletons may be instantiated. This common framework defines the
notion of message passing between strands, the knowledge of various agents in-
volved in protocol execution, the construction of ciphertext terms, and many
other ideas central to approximating the strand-space perspective.

The sorts and subsorting relationships in our specification largely echo the
basic CPSA algebra: a top-level mesg sort for arbitrary values, skey and akey
sorts for symmetric and asymmetric keys, text for plain values like nonces, etc.
An ordered Timeslot sort serves as an index for message events. Relations on
these sorts track key ownership (owners, pairs), long-term keys (1tks), mes-
sage contents (data), the state of each agent’s knowledge at any given time
(learned_times), ciphertext contents (plaintext), and other essential properties
of a protocol run.

Using this relational signature, the specification imposes well-formedness cri-
teria that should hold regardless of the specific protocol being examined. Briefly,
these constraints include:

— standard type constraints (e.g., that every Ciphertext has exactly one en-
cryption key);

— every mesg is a key, name, text, or Ciphertext;

— all messages are either sent to, or received from, the attacker strand;

— sent messages only include values known to the sender;

— the plaintext relation is acyclic;

— the pairs relation defines one unique key pair per name;

— the 1tks relation defines a partial function on ordered pairs of names; and

— a characterization of when an agent learns a value (the contents of a message
they can encrypt, a value they have just generated, their own name, etc.)

This specification approximates the strand space formalism, but in the spirit
of CPsa itself, it is worth examining the explicit and implicit assumptions made
and briefly discussing their consequences. Indeed, it is worth noting that Forge’s
bounded relational logic was not always the most natural idiom to express our
goals—we return to this in Section 9.

Concrete agents One of our goals was to explicitly represent the state of each
agent’s knowledge throughout a protocol execution. However, in general an agent
may run multiple strands of the same protocol, and so our specification separates
the notion of strand (and its variable bindings) from the corresponding agent
(and its pool of knowledge at any given time). We make this explicit in our
visualization (Section 6) by naming every strand’s corresponding principal.

An explicit attacker The Attacker strand is synonymous with an untrusted
communication medium and is thus an explicit version of the Dolev-Yao [13]
adversary. We found this to be useful, both for debugging the prototype and for
visualization, since it makes it easy to track exactly which messages are delayed
or rewritten and what knowledge has been exposed.

Strands and Messages A satisfying model for our specification contains a set of
strands, along with information about message send and receive events. Mes-
sages may involve an arbitrary (user-bounded) number of nested encryptions.
We make two simplifying assumptions. First, we do not view strands as hav-
ing a length, but rather a specific pattern of send and receive events over the
duration of the run. No model can contain a partial strand. Second, message
components are implicitly unordered. These choices are a semantic mismatch
versus CPSA—and indeed prevent detection of some attacks!—but eased first-
cut development, sufficed for the examples in Section 7, and could be corrected
via standard techniques with some engineering effort.

Origination and Pre-existing Knowledge In CPSA, a strand originates a term if
(broadly) that strand sends the term, and all other strands that send the term
must first receive it. CPSA uses this idea to speak of a nonce being freshly created
or a key never being sent by any honest participant. We echo this idea as:

i|pred originates([s: strand, d: mesgl] { -- d originates on s
2 some m: sender.s | { -- m sent by strand s

3 d in subterm[m.datal] -- contains d as a sub-term

4 all m2: (sender.s + receiver.s) - m | { -- all else

5 {m2 in m. (" (next))} -- if m2 occurred before m

6 implies

7 {d not in subterm[m2.datal} -- d is not in m2

8

9

10}

Moreover, since our specification explicitly represents knowledge, certain terms
must originally come to be in an agent’s knowledge-base. We enforce the exis-
tence of a public-private key pair for every principal, and assert that it is known
in advance, along with the identities of all participants, their public keys, and
any long-term keys the principal is party to.

The Evolution of Knowledge The learned_times relation indicates how an agent’s
knowledge grows over time. For every tuple (n,v,t), where n is a name, v is a
term, and ¢ is a timeslot, (n,v,t) is in learned_times if and only if n can derive
v at time ¢ from prior knowledge and any message received at t. Some caution
is needed: naively, this can lead to self-justifying knowledge. We use an analogy
to defining the transitive closure (T'C)) of a relation R in first-order logic. One
might be tempted (especially after seeing the idea in Datalog) to write TC' as:

Va,y| TC(x,y) < (R(z,y)VIz|TC(x,z) A R(z,y))

Unfortunately, this sentence fails to encode that T'C' must be the least such
relation. Similarly, suppose we state that (1) a ciphertext term may be known if
an agent knows its contents and the appropriate public key; and (2) a term within
a ciphertext may be known if an agent knows the ciphertext and the matching
private key. Now it is consistent for any agent to know any value, provided they
also know a ciphertext wrapping both the value and its own decryption key.

We might prevent this spurious knowledge by allowing only one such ac-
tion per timeslot, but that solution would prevent fully learning from mes-
sages that contain decryption keys. Any agent receiving the two values k; and
{k2,{k3}k, }x, must be able to learn the innermost value k3: the key k; can be
used to decrypt the outermost ciphertext, which itself contains a new ciphertext
and key ko to decrypt it, and so on.

Instead, we impose a microtick discipline, inspired by simulation tools like
Ptolemy [43]. Microticks subdivide every timeslot, providing a frame that helps
ensure that knowledge is well-founded. In any microtick, knowledge may be
derived only if it was just received, was known in a previous timeslot, or has been
decomposed from more complex terms in a previous microtick. Then (n,v,t) is
in learned_times if and only if n has just received a message and v is in the
current workspace for some microtick.

The challenge of bounds Since Kodkod, and thus Forge, uses a bounded relational
logic (Section 3), there is an inherent incompleteness to its analysis. This includes
not merely how many nonces may be generated, but also more subtle factors
like the maximum term depth. Bounds also pose a user-facing challenge: at
the moment, queries must provide bounds, which can require much effort and
mental arithmetic to produce. Some of these issues could be ameliorated by
taking advantage [39] of sorting information on terms, and others, such as the
inherent bound on the number of timesteps, cannot.

5 Processing CPSA Declarations

Our prototype uses Racket macros to expand defprotocols and defskeletons to:

1. sort definitions (e.g., every role induces a new sub-sort of strand);

2. relation definitions (e.g., every role variable becomes a new relation that
maps strands of that role to the variable’s sort); and

3. relational formula sets (called predicates in Forge) that define the meaning
of the protocol or skeleton.

The predicates for each protocol, skeleton, etc. can be invoked in queries, giving
the user control over which aspects of the CPSA input to include in the analysis.

Because Forge builds atop Kodkod’s formalism, it has only a notion of re-
lations, atop which functions must be defined via constraints. This means that
function application must be expressed via relational algebra—most commonly
by using the join operator. For instance, constraints ensure that, if s is a member
of the strand sort, then the expression (join s agent) evaluates to the agent
running strand s. Likewise, in the Needham-Schroeder example, strands s of role
init have a field a. This field is represented by a relation named ns_init_a and
the value of variable a in s can be found via (join s ns_init_a).

5.1 Deriving Relational Constraints

For every role R in protocol P, the translator produces a Forge formula (named
exec_P_R) that constrains the behavior of every strand of that role. In the case of
roles, the main bulk of the work lies in enforcing that all strands with that role
obey the provided trace declaration. E.g., in the Needham-Schroeder initiator
strand, the first event must send the term (enc nl a (pubk b)), and so on. One
subtlety here is that Forge’s constraint language has no notion of a term in the
sense of CPSA’s algebra; it has only relations. The translator cannot speak of
(enc n1 a (pubk b)) directly to mean the result of encrypting n1 and a with b’s
public key. Consequently, we use existentially quantified variables to stand in
for non-ground terms, and recursively traverse every event to ensure the proper
ordering and nesting between events and terms.

For skeletons, the main challenge is in encoding the maplets that equate vari-
ables in the skeleton with terms over variables in strands that the skeleton con-
tains. A responder point-of-view skeleton for Needham-Schroeder (Section 2.2)
contains the variables a and b (names) and a text value n2. These are bound in
the strand definition (defstrand resp 3 (a a) (b b) (n2 n2)), which says that
the skeleton’s a is the same as the responder strand’s a, and so on. We enforce
these via equality constraints on the field relations for the corresponding strand
and skeleton variables.

Declarations within a skeleton, such as a unique-origination requirements, as
well as listener-strand definitions, become quantified formulas as follows:

(unig-orig v): s : Strand | originates|s, v]
(non-orig v): Vs : Strand | —originates|s, v]

(listener v): 3t : Timeslot | (Attacker,v,t) € learned_times

That is, respectively, there is a unique strand that originates the value, no strand
originates the value, and the value is compromised at some point. Should a
unig-orig declaration appears in a role R, rather than a skeleton, it applies
locally to all strands with that role:

(unig-orig v): (3ls: Strand | originates[s, v]) A originates|r,v]

5.2 Queries and Predicates

Users write queries in terms of the base and derived specifications combined.
Since every role and skeleton formula is a Racket value, queries can build on,
deconstruct, or otherwise manipulate these formulas. A full query formula might
then look something like the following parenthetical Racket expression:

1| (and wellformed ; base constraints
2 exec_reflect_init ; initiator strand
3 exec_reflect_resp ; responder strand
4 constrain_skeleton_ns_1) ; responder point-of-view

where wellformed enforces the base specification, the two exec_ predicates add
strand roles, and constrain_skeleton_ns_1 asserts that only protocol runs con-
taining skeleton 1 and its declarations should be included.

Breaking the overall query into multiple predicates has several virtues. Not
only does it ease debugging, experimentation, etc. but it is also how our proto-
type supports CPSA-style input files with many skeletons: queries reference the
pertinent skeleton(s) and no others.

6 Visualizing Strands

Alloy comes with a directed-graph-based model visualizer that has not altered
much over its lifetime. In Forge, we have instead integrated the Sterling visu-
alizer [15]. While Sterling reproduces (a slightly more modern and attractive
version of) Alloy’s visualizer, it also enables scripting using JavaScript and Re-
act. Thus, anyone familiar with these widely-used systems can create custom
visualizations for their domain. In spite of the theoretical literature on reason-
ing from diagrams [3,47], we are largely unaware of other general model-finding
tools that deliberately provide scaffolding for domain-specific visualization. (A
notable exception is the GUPU pedagogic Prolog system [40], which lets users
define visualizations over answer substitutions returned by the engine.)

Sterling ‘Y Graph [Table <> Script [1 Source Next @

« [)File v £ Execute <div> <canvas> <svg>
ns_inito AttackerStrando ns_resp0
(agent: name1) (agent: Attacker0) (agent: name0)

const : {nameTtext1} hybK (Attacker0)
. TIMESIOt0 I = m e e e e

{name1text1} pypK(name0)
Timeslot! N ______

{textOtext1} puok namet)
Timeslot2 B ____

{textOtextt} pupk (name1)
Timeslot3

{text0} pubk (Attacker0)
Timeslotd

I {text0} pubK(name0)
Timeslots M ________

ty
ype', 'text/css')
t("@import url('https://fonts.googleapis.col

function orderTimesl

Fig.5: The Sterling visualizer, with a Needham-Schroeder execution loaded.

Many protocol-analysis tools implement custom visualizations. Two of the
most idiosyncratic are VerifPal [24] and cpsa [12], with VerifPal’s more concrete
display of (e.g.) agent knowledge contrasting against CPSA’s minimal abstrac-
tion. We opted for a more concrete approach in order to showcase the power of
custom visualizations. Figure 5 shows a full Sterling window containing a custom
visualization. The left-hand pane shows the visualizer script being run—enabling
changes without restarting either Sterling or Forge. The “Next” button advances
to a different execution. Other key design choices include:

A Concrete Attacker Our visualizer shows the medium of communication explic-
itly as an attacker who, like others, can gain knowledge over time. One downside
of this approach is that, depending on strand positioning, messages may be
shown “crossing over” uninvolved strands. The attacker could be factored out
in alternative visualizations (perhaps replaced with a terse “...”), but we found
that an explicit attacker reinforces the Dolev-Yao adversary model.

Disambiguating Key Ownership Nonces, keys, agent names, and other data are
represented in the visualizer by concrete atoms: text0 might be a nonce or secret,
skey2 a symmetric key, name1 the identity of an agent, and so on. Crucially, atoms
are not the same as CPSA-algebra terms: while the terms a and b may denote the
same value, the atoms name0 and namel are necessarily different. This difference
is especially important for key atoms. It would be baffling to see only that a
ciphertext is encrypted with akey3—an asymmetric key, but whose? Because of
this, our visualizer converts key atoms to equivalent CPSA-style terms whenever
possible: e.g., akey3 to pubk(name0) when akey3 is name0’s public key.

Telescoping Knowledge State If a user is trying to understand how a certain at-
tack occurs, information about agents’ knowledge can be vital. Yet, showing all
knowledge quickly becomes overwhelming. To mitigate this issue, we made the

blanchet_init0 AttackerStrand0 blanchet_resp0
(agent: name1) (agent: Attacker0) (agent: name0)

{{skey1} privk (name1)} pubK(Attacker0) h

Timeslot0

skey1 Attacker0 name0
name1 {skey1} privk (name1)
{skey1} privk (name1) {skey1} privk (name1)} pubK (Attacker0)

{{skey1} privK(name1)} pubK (name0)
{{skey1} privk (name1)} pubK (Attacker0)

Skey privK(name1)} pubK(name0)
Timeslot1

{text1} geyn
Timeslot2

{text0} skey1 I
Timeslot3

Fig.6: A good execution of Blanchet’s protocol with initial knowledge fully ex-
panded. Freshly generated values are colored blue, and derived values (some
unused) are colored red. Note also the nested ciphertexts, enabled by Section 4.

reflect_initQ AttackerStrand0 reflect_resp0
(agent: name1) (agent: AttackerQ) (agent: nameQ)
{pubK(namea}} privi(name1)

B o [
{pubK(nameO)} privic(name1)
Timeslot1
{pubK(name1}} privi(namex)
Timeslot2
{pubK(name}} privk (name0)
B~

Fig. 7: A reflection attack from CPSA’s example suite.

visualization interactive: users may click to expand (or hide) agent knowledge at
any point in time. In Section 2, Figure 3 gave a magnified view of this feature;
Figure 6 shows it in the context of a full visualization of Blanchet’s [4] simple ex-
ample protocol. While agent knowledge is not always pertinent to understanding
an attack (as in the simple reflection shown in Figure 7), telescoping knowledge
display makes it far easier to see how a value may be compromised.

7 Prototype Performance

Our goal is not to produce an optimized analysis tool, but rather a prototype
that is “good enough” to iterate on. New language constructs, enrichments to
the spec, or improved visualizations are all possible within the Forge framework.
While some improvements such as custom search algorithms are not yet possible,
many parts (especially the visualization) are portable. In addition, the prototype
may be useful for validating a new, optimized engine via model-based testing.

[Protocol run [sat?[Runtime (sec)]

Needham-Schroeder validation | v/ 5
Needham-Schroeder attack v 6
Needham-Schroeder non-attack| v’ 5
Needham-Schroeder (fixed)|validation | v/ 6
Needham-Schroeder (fixed)|attack 6
Reflection validation | v/ 4
Blanchet validation | v/ 4
Blanchet init atk 5
Blanchet resp atk v 4
Blanchet (revised) validation | v 4
Blanchet (revised) resp atk 5

Fig. 8: Runtime performance (rounded to nearest second).

Despite these disclaimers, honesty compels us to report performance for all
examples in this paper—extreme runtimes would undermine our stated goals.
All examples were taken from CPSA’s repository (Section 2) and run on a 2017
MacBook Pro (i5 2.3 GHz, 8 GB RAM). Concretely, we ran on:

the original Needham-Schroeder [35] public-key protocol;

— Lowe’s [26] modification to Needham-Schroeder;

— Blanchet’s simple example protocol (from the CPSA manual [25]); and
the “reflection” protocol demo (from the CPSA example suite).

These protocols exercise a number of core ideas in the basic CPSA algebra: asym-
metric key pairs, short- and long-term symmetric keys, and nested ciphertexts.

For each protocol, we first ran a wvalidation check to ensure the prototype
found concrete executions. All validation checks were satisfiable. For Needham-
Schroeder, we demonstrated the well-known attack and verified that the attack
is no longer possible in the revised version. For Blanchet’s simple-example pro-
tocol, we confirmed that the secret cannot be compromised from the initiator’s
perspective, but that it can be from the responder’s perspective. We also con-
firmed that this vulnerability does not exist in the revised version.

Figure 8 reports results. The Protocol and run columns indicate which
analysis was being performed. The sat? column denotes whether the analysis was
satisfiable—i.e., whether any models were produced, or if the solver completed
its search empty-handed. Finally, the Time (sec) column reports the runtime
in seconds for the analysis.

Interpretation We find that runtime is largely uniform, in the single-digit sec-
onds, across these simple protocols. This suggests that our (unoptimized) pro-
totype scales reasonably to small examples. The CPSA analyzer is over an order
of magnitude faster. However, roughly 2 seconds of Forge’s time is spent on ex-
panding the protocol and skeleton definitions and then compiling them to Racket
bytecode. There may be strategies for reducing this overhead.

8 Related Work

Our end-to-end concept is partly inspired by Rosette [53], but differs signifi-
cantly because of our focus on a direct encoding of domains in Forge, as well
as our cultivation of domain-specific visualizations. Forge itself uses a heavily
modified version of Rosette’s Ocelot [6] interface to access the Kodkod [54] and
Pardinus [10] relational solvers.

Our case-study prototype draws broadly from the strand-space formalism [51]
and specifically from CPSA [12]. Strand spaces have been used to reason about a
variety of protocols and related topics; a representative sample of which would
include Guttman’s work on fair exchange [20] and trust management [22]. Strand
spaces also provide an interesting domain to ask foundational questions about
model finding, chiefly which [14] models ought to be presented—a question that
our prototype largely sidesteps in its present form.

There are of course several cryptographic analysis tools, such as VerifPal [24]
and Proverif [4]. As our current effort focuses largely on strand spaces and CPSA’s
input language, from a specification perspective these other tools are largely
unrelated. However, we note that Proverif’s use of Horn clauses could potentially
lend itself to similar prototyping in Forge. Even more, we drew inspiration from
visualizations in other tools, especially Proverif, in building our prototype.

9 Discussion

We have presented the Forge system for prototyping solver-based DSLs atop
Racket, and demonstrated its use in a prototype crypto-analysis tool in the vein
of cPsA. The vast majority of the specification and visualization work was done
by a pair of undergraduates over a (somewhat less than) one-semester course
project. While we believe this work shows the viability of the approach, we
would be remiss to close without first addressing a few limitations and sharing
lessons learned beyond the trivial specification tricks seen in Section 4.

Fidelity w.r.t. cpSA We focused our effort here on sketching Forge’s language-
oriented prototyping process, rather than completely conforming to the seman-
tics of CPSA. Further refinement along these lines (such as resolving limitations
mentioned in Section 4, automated bounds inference, support for other algebras,
etc.) would have been a matter of added engineering effort for little benefit: we
have no desire to actually reproduce the already-excellent cPsA in Forge, but
rather make an experiment in prototyping.

Which models? The question of which output model is beginning to be well
studied: some works focus on minimality [37,45], or closeness to a target [10,
27]. Other tools, like AUnit [49, 48] and CompoSAT [42] have prioritized models
based on ideas from software-testing like coverage and mutation. Works like Bor-
deaux [34] have even argued for producing non-models to ease comprehension
and debugging. We largely sidestep this question here, providing the user with

an Alloy-style “Next” button, but no further control. This can be frustrating,
especially when compared against CPSA’s sparse enumeration. We often found
ourselves refining our queries and restarting the solver from scratch, rather than
continuing manually. Thus, although we believe that CPSA’s supreme abstract-
ness can be a barrier to entry, especially for non-experts, we freely admit that
its parsimonious output is more readily explorable at a high level than ours.

A Downside of Concreteness: Equality Since Forge produces models in terms
of concrete atoms, it is free to have one atom serve multiple purposes unless
prevented by the constraints it is given. Concretely, it might return first a run
of Needham-Schroeder where the initiator and responder strands are hosted by
the same agent, and then another run where the agents differ. This can lead to
a plethora of seemingly spurious protocol runs, unless the user adds additional
constraints to their query. In contrast, CPSA does not suffer from this issue: it
will not equate two terms unless it can justify doing so. It would be informative
to try this prototype using a different solver, perhaps one that is more amenable
to an “enrich-by-need” analysis [14].

Forge and Solvers Forge currently uses only the Kodkod toolchain. Although it
has recourse to weighted Max-SAT and other algorithmic extensions, it currently
lacks a Satisfiability Modulo Theories engine. Forge is thus limited at present in
its ability to reason about mathematical integers, strings, and other mainstays
of SMT. Moreover, as we observed in Section 4, we needed non-trivial technical
effort to even approximate CPSA’s term algebras in Forge. However, we are en-
couraged by efforts to both translate relational specifications into SMT [19, 1,
30, 50] and encode a theory of relations directly in SMT [31]. As Forge’s algo-
rithmic capabilities evolve, so too will its capacity to be used as a prototyping
framework; improvements to Forge would be immediately available to domain
modelers and tool authors (Figure 1) via configuration options.

Acknowledgments We are grateful to Joshua Guttman for many enjoyable
and productive conversations. We thank the creators of ¢PsA for their vision,
the anonymous reviewers for their feedback, and the editors for putting together
this much-deserved Festschrift. This work was partly supported by the US Na-
tional Science Foundation. This research was also developed with funding from
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL). The views, opinions and/or findings expressed
are those of the author and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

References

1. Abbassi, A., Day, N.A., Rayside, D.: Astra version 1.0: Evaluating
translations from Alloy to SMT-LIB. CoRR abs/1906.05881 (2019),
http://arxiv.org/abs/1906.05881

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver

verifier research platform. In: International Conference on Computer Aided Verifi-
cation. Springer (2010). https://doi.org/10.1007/978-3-642-14295-6_11

Barwise, K.J., Allwein, G. (eds.): Logical Reasoning with Diagrams. Oxford Uni-
versity Press (1996)

Blanchet, B.: Modeling and verifying security protocols with the applied pi calculus
and ProVerif. Foundations and Trends in Privacy and Security 1(1-2), 1-135 (Oct
2016

Blan)chette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order
logic based on a relational model finder. In: Interactive Theorem Proving (2010)
Bornholt, J., Torlak, E.: Synthesizing memory models from framework sketches
and litmus tests. In: Programming Language Design and Implementation (PLDI)
2017

(Chudzlov, A., Collins, N.; Cook, B., Dodds, J., Huffman, B., MacCarthaigh, C.,
Magill, S., Mertens, E., Mullen, E., Tasiran, S., Tomb, A., Westbrook, E.: Contin-
uous formal verification of Amazon s2n. In: International Conference on Computer
Aided Verification (2018)

Cook, B., Khazem, K., Kroening, D., Tasiran, S., Tautschnig, M., Tuttle, M.R.:
Model checking boot code from AWS data centers. In: International Conference on
Computer Aided Verification (2018)

Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety.
In: International Conference on Computer Aided Verification (2006).
https://doi.org/10.1007/11817963_37

Cunha, A., Macedo, N., Guimaraes, T.: Target oriented relational model finding.
In: International Conference on Fundamental Approaches to Software Engineering.
pp. 17-31. Springer (2014). https://doi.org/10.1007/978-3-642-54804-8_2

Danas, N., Nelson, T., Harrison, L., Krishnamurthi, S., Dougherty, D.J.: User stud-
ies of principled model finder output. In: Software Engineering and Formal Methods
2017

](Doghzni, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic
protocols. In: International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (2007)

Dolev, D., Yao, A.C.: On the security of public key protocols.
IEEE Transactions on Information Theory 29(2), 198-207 (1983).
https://doi.org/10.1109/TIT.1983.1056650

Dougherty, D.J., Guttman, J.D., Ramsdell, J.D.: Security protocol analysis in con-
text: Computing minimal executions using SMT and CPSA. In: International Con-
ference on Integrated Formal Methods. Lecture Notes in Computer Science, vol.
11023, pp. 130-150. Springer (2018). https://doi.org/10.1007/978-3-319-98938-9_8
Dyer, T., Baugh, J.: Sterling: A web-based visualizer for relational modeling lan-
guages. In: Rigorous State Based Methods (2021)

Felleisen, M., Findler, R.B., Flatt, M., Krishnamurthi, S., Barzilay, E., McCarthy,
J., Tobin-Hochstadt, S.: A programmable programming language. In: Communi-
cations of the ACM (2018)

Findler, R.B., Clements, J., Flanagan, C., Flatt, M., Krishnamurthi, S., Steckler,
P., Felleisen, M.: DrScheme: A programming environment for Scheme. Journal of
Functional Programming 12(2), 159-182 (2002)

Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Ma-
hajan, R., Millstein, T.: A general approach to network configuration anal-
ysis. In: Networked Systems Design and Implementation. p. 469-483 (2015).
https://doi.org/10.5555/2789770.2789803

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ghazi, A.A.E., Taghdiri, M.: Analyzing Alloy formulas using an SMT solver: A
case study. CoRR abs/1505.00672 (2015), http://arxiv.org/abs/1505.00672
Guttman, J.D.: Fair exchange in strand spaces. In: International Work-
shop on Security Issues in Concurrency. EPTCS, vol. 7, pp. 46-60 (2009).
https://doi.org/10.4204/EPTCS.7.4

Guttman, J.D., Ramsdell, J.D., Wand, M.: VLISP: a verified implementation of
Scheme. LISP Symb. Comput. 8(1-2), 5-32 (1995)

Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,
B.T.: Trust management in strand spaces: A rely-guarantee method. In: Schmidt,
D.A. (ed.) European Symposium on Programming. Lecture Notes in Computer
Science, vol. 2986, pp. 325-339. Springer (2004). https://doi.org/10.1007/978-3-
540-24725-8_23

Jackson, D.: Software Abstractions: Logic, Language, and Analysis. MIT Press, 2
edn. (2012). https://doi.org/10.5555,/2141100

Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: Cryptographic protocol anal-
ysis for the real world. In: International Conference on Cryptology in India.
Lecture Notes in Computer Science, vol. 12578, pp. 151-202. Springer (2020).
https://doi.org/10.1007/978-3-030-65277-7_8

Liskov, Moses D. and Ramsdell, John D. and Guttman, Joshua D. and
Rowe, Paul D. : The cryptographic protocol shapes analyzer: A manual.
https://github.com/mitre/cpsa/blob/master/doc/cpsamanual.pdf, accessed June
6, 2021

Lowe, G.: An attack on the Needham-Schroeder public-key authentication proto-
col. Inf. Process. Lett. 56(3), 131-133 (Nov 1995). https://doi.org/10.1016,/0020-
0190(95)00144-2

Macedo, N., Cunha, A., Guimaraes, T.: Exploring scenario exploration. In: Inter-
national Conference on Fundamental Approaches to Software Engineering (2015)
Macedo, N., Guimarades, T., Cunha, A.: Model repair and trans-
formation with Echo. In: Automated Software Engineering (2013).
https://doi.org/10.1109/ASE.2013.6693135

Marinov, D., Khurshid, S.: TestEra: A mnovel framework for automated
testing of Java programs. In: Automated Software Engineering (2001).
https://doi.org/10.1109/ASE.2001.989787

McCormick, K.D., Cinelli, F.C.: Translating Alloy to Smt-Lib. Major qualifying
project (b.s. thesis), Worcester Polytechnic Institute (2018)

Meng, B., Reynolds, A., Tinelli, C., Barrett, C.W.: Relational constraint solv-
ing in SMT. In: International Conference on Automated Deduction (2017).
https://doi.org/10.1007/978-3-319-63046-5_10

Milicevic, A., Misailovic, S., Marinov, D., Khurshid, S.: Korat: A tool for gener-
ating structurally complex test inputs. In: International Conference on Software
Engineering (2007)

Milicevic, A., Near, J.P., Kang, E., Jackson, D.: Alloy*: A general-purpose higher-
order relational constraint solver. In: International Conference on Software Engi-
neering (2015)

Montaghami, V., Rayside, D.: Bordeaux: A tool for thinking outside the box. In:
International Conference on Fundamental Approaches to Software Engineering.
pp. 22-39 (2017)

Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21(12), 993-999 (Dec 1978).
https://doi.org/10.1145/359657.359659

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless program-
ming and reasoning for software-defined networks. In: Networked Systems Design
and Implementation (2014)

Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference (2010)

Nelson, T., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Toward a more complete
Alloy. In: Conference on Abstract State Machines, Alloy, B, and Z (2012)
Neumerkel, U., Kral, S.: Declarative program development in prolog with GUPU.
In: International Workshop on Logic Programming Environments. pp. 77-86 (2002)
Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon web services uses formal methods. Communications of the ACM
58(4), 66-73 (2015). https://doi.org/10.1145/2699417

Porncharoenwase, S., Nelson, T., Krishnamurthi, S.: CompoSAT: Specification-
guided coverage for model finding. In: International Symposium on Formal Meth-
ods (FM) (2018)

Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014), http://ptolemy.org/books/Systems

Rupakheti, C.R., Hou, D.: An abstraction-oriented, path-based approach for an-
alyzing object equality in Java. In: Working Conference on Reverse Engineering
(2010). https://doi.org/10.1109/WCRE.2010.30

Saghafi, S., Danas, N., Dougherty, D.J.: Exploring theories with a model-finding
assistant. In: International Conference on Automated Deduction. pp. 434-449.
Springer (2015)

Sergey Bronnikov: Practical FM. https://github.com/ligurio/practical-fm, ac-
cessed January 23rd, 2021

Shimojima, A.: On the Efficacy of Representation. Ph.D. thesis, The Department
of Philosophy, Indiana University (1996)

Sullivan, A., Wang, K., Zaecem, R.N., Khurshid, S.: Automated test generation
and mutation testing for Alloy. In: Software Testing, Verification and Validation
(ICST) (2017). https://doi.org/10.1109/ICST.2017.31

Sullivan, A.; Zaeem, R.N., Khurshid, S., Marinov, D.: Towards a test automation
framework for Alloy. In: Symposium on Model Checking of Software (SPIN). pp.
113-116 (2014). https://doi.org/10.1145/2632362.2632369

Tariq, Khadija: Linking Alloy with SMT-based Finite Model Finding. Master’s
thesis, University of Waterloo (2021), http://hdl.handle.net/10012/16756
Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. J. Comput. Secur. 7(1), 191-230 (1999)

Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. SPLASH Onward! (2013)

Torlak, E., Bodik, R.: A lightweight symbolic virtual machine for solver-aided host
languages. In: Programming Language Design and Implementation (PLDI) (2014)
Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems.
pp. 632-647 (2007)

