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Abstract

There are several different gradual typing semantics, reflect-
ing different trade-offs between performance and type sound-
ness guarantees. Notably absent, however, are any data on
which of these semantics developers actually prefer.

We begin to rectify this shortcoming by surveying pro-
fessional developers, computer science students, and Me-
chanical Turk workers on their preferences between three
gradual typing semantics. These semantics reflect important
points in the design space, corresponding to the behaviors of
Typed Racket, TypeScript, and Reticulated Python. Our most
important finding is that our respondents prefer a runtime
semantics that fully enforces statically declared types.

ACM Reference Format:

Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shri-
ram Krishnamurthi. 2018. The Behavior of Gradual Types: A User
Study. In Proceedings of Dynamic Languages Symposium (DLS’18).

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction

In recent years, the long-standing debate between static and
dynamic typing has been finding a reconciliation: gradual
typing [27, 31]. In a gradually typed language, program-
mers are free to mix typed and untyped code. Some of the
early gradually typed languages were created by retrofitting
a type system on a (sublanguage of a) dynamic language
(e.g., Typed Racket [32, 33], TypeScript [3], and Reticulated
Python [36]); more recently, new languages are being made
gradually typed from the outset, such as Pyret (pyret.org)
and Dart 1 (v1-dartlang-org.firebaseapp.com).
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But what should the semantics of a gradually-typed pro-
gram be? In particular, when typed and untyped regions of
code interact, what sort of runtime checks should protect
the invariants of typed code? The answer to this question
has implications for soundness, simplicity, performance, and
(for retrofitted type systems) backward compatibility.

Several papers presenting these systems justify their de-
signs by appealing to what they consider natural or intuitive
to programmers [8, 9, 28, 33, 37]. However, none of the papers
provide evidence to justify those claims. Our work repairs
this weakness by performing the first study of developer
preferences between different gradual typing semantics.
Concretely, we focus on three semantics: those corre-

sponding to Typed Racket (Deep), TypeScript (Erasure), and
Reticulated Python (Shallow). We adapt these semantics
to a common surface language in the manner suggested by
Greenman and Felleisen [12] and thus obtain three possibly-
distinct behaviors for one mixed-typed program. Deep treats
type annotations as (higher-order) contracts between regions
of code. Erasure ignores type annotations at runtime. Shal-
low lies between these extremes; it checks values against
type constructors.
We design a survey to illustrate key differences between

the three semantics using short programs. We administer the
survey to three populations: developers at a major software
company, computer science students, and Mechanical Turk
workers. We find that respondents generally dislike Erasure
and like behavior that aligns with a statically-typed language.
In addition to our findings, the survey is itself useful as a col-
lection of representative programs that a language definition
can use in its manuals to explain its runtime behavior.

2 Three Approaches to Gradual Typing

Soundness is a desirable property for any type system be-
cause it relates the ahead-of-time claims of the types to run-
time outcomes. For example, if a sound type system claims
that an expression e is of type Int×Int (representing a tuple
of integers) and the evaluation of e yields a value, then the
value is definitely a tuple with integer components. This fact
about the tuple e can be used to state similar guarantees
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about code that interacts with the tuple, and in general a pro-
grammer can use type soundness to reason compositionally
about the correctness of a program.
A gradual typing system, however, cannot be sound in

the normal sense because such systems let untyped values
interact with statically-typed regions of code. For example,
a typed module that imports an untyped value must declare
a static type for the value, but cannot know until runtime
whether the value matches the type. To illustrate, the typed
code below expects a tuple of numbers but receives a tuple
of strings at runtime:

1 // UNTYPED code

2 var f = function(x) { return (x, x); }

3
4 // TYPED code

5 declare function

6 f(x: String) : (Number , Number);

7
8 var nums : (Number , Number) =

9 f("NaN");

10 var num : Number =

11 nums [0];

The question for gradual typing is: how to defend a statically-
typed context against a mismatched untyped value?

Three strategies have emerged: Deep, Erasure, and Shal-
low. In terms of the typed code above, which is internally
type-correct, Erasure runs the program to completion de-
spite the mismatch. Deep inserts an assertion that the call to
f on line 9 returns a tuple of numbers and, because the tu-
ple contains strings, halts before completing the assignment
on line 8. Shallow only asserts that the call to f returns
a tuple; because f does, this check passes. It later asserts
that nums[0] on line 11 returns a number. The latter check
fails and Shallow halts before the assignment on line 10.
Generally, at runtime, Deep enforces types, Erasure ignores
types, and Shallow enforces type constructors.
The following subsections outline the three strategies in

more detail by explaining: (1) the motivation, (2) the source-
code positions where runtime checks may occur, and (3)
the nature of the runtime checks. Since each runtime check
corresponds to a type, the examples assume a base type
representing the set of integer values, an inductive type
representing tuples, and a coinductive type for functions:

τ = Int | τ×τ | τ→τ
The reader may extrapolate an enforcement strategy for
other base types (e.g., strings), inductive types (e.g., im-
mutable sets), and coinductive types (e.g. arrays, objects).

2.1 Deep: Enforce Types

The goal of the Deep strategy is to offer a generalized notion
of type soundness. Interactions between typed and untyped
code may lead to a mismatch at runtime, but otherwise the
programmer can trust the static types.

To this end, Deep strictly enforces the source-code bound-
aries between statically-typed and dynamically-typed code.
If a typed context imports an untyped value, the value goes
through a structural check. Dually, if an untyped context
imports a typed function, the function receives latent pro-
tection against untyped inputs in the form of a derived type
boundary. Runtime checks occur only at source-code bound-
aries and at derived boundaries for higher-order values.

When an untyped valuev flows into a context that expects
some value of type τ , written v =⇒ (· : τ ), Deep employs
the following type-directed validation strategy:
Deep Strategy

• v =⇒ (· : Int)
check that v is an integer
• v =⇒ (· : τ0×τ1)
check that v is a tuple and recursively check its com-
ponents; in particular, check that v = ⟨v0,v1⟩ and
recursively check vi =⇒ (· : τi ) for each element
• v =⇒ (· : τd→τc )
check that v is a function and wrap v in a proxy that
protects future inputs and checks future outputs (see
Matthews and Findler [18] §3 for a discussion).

In summary, the Deep strategy eagerly checks finite values
and lazily checks infinite values.

2.2 Erasure: Ignore Types

The Erasure strategy uses types for static analysis, and
nothing more. At runtime, any value may flow into any
context regardless of the type annotations:
Erasure Strategy

• v =⇒ (· : Int)
check nothing
• v =⇒ (· : τ0×τ1)
check nothing
• v =⇒ (· : τd→τc )
check nothing

Despite the complete lack of type soundness, the Erasure
strategy is popular among implementations of gradual typ-
ing. For one, the static type checker can point out logical
errors in type-annotated code. Second, an IDE may use the
static types in auto-completion and refactoring tools. Third,
Erasure is simpler to implement than any form of type
enforcement. Fourth, users that are familiar with the host
language do not need to learn a new semantics to understand
the behavior of type-annotated programs. Fifth, Erasure
runs as fast as the original language.

2.3 Shallow: Protect Typed Code

The Shallow strategy ensures that typed code does not “go
wrong” [22] in the sense of applying a primitive operation to
a value outside its domain. For example, Shallow ensures
that every function call targets a callable value.
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In general, a “wrong” expression contains a value with
an incorrect top-level shape. To prevent such expressions, it
therefore suffices to check the top-level shape of values in
three situations: (1) at the source-code boundaries between
typed and untyped code, (2) before untyped code applies
a typed function, and (3) after typed code receives a value
from an untyped data structure or function. The Shallow
strategy meets these requirements by defending statically-
typed code. In particular, the defense adds one argument-
check to the body of every typed function and guards every
tuple projection and function application with a result check.
The actual shape checks are simple:
Shallow Strategy

• v =⇒ (· : Int)
check that v is an integer
• v =⇒ (· : τ0×τ1)
check that v is a tuple
• v =⇒ (· : τd→τc )
check that v is a function

Informally, the Shallow strategy is a compromise between
the hands-off attitude of Erasure and the meticulous Deep
strategy. The Shallow type soundness guarantee, however,
is weak and non-compositional. If a typed expression reduces
to a value, the only certainty is that the value has the correct
top-level shape.

3 Survey Method

We created a survey (the essence of which is in appendix A)
consisting of several well-typed programs followed by the
the program’s behavior under each semantics. The purpose
of the survey was to collect data on participants’ preference
between the Deep, Erasure, and Shallow behaviors.

We evaluated each behavior along two dimensions simul-
taneously: how subjects felt about the behavior (whether
they Liked or Disliked it) and whether it matched their expec-
tations (Expected or Unexpected). We call the combination of
these (e.g., Like and Expected) an attitude. We presented the
resulting four attitudes as the options for subjects to indicate
their feeling about each behavior.
Observe that the dimensions are roughly independent.

Onemight Like a particular behavior (say bignum arithmetic)
but, since it is rarely seen in languages, find it Unexpected.
One might even become habituated to behaviors they Dis-
like. For instance, a programmer might Dislike that + is not
commutative in JavaScript but, having gotten accustomed to
the behavior, may come to Expect it in other languages too
(i.e., Dislike and Expected).

3.1 Survey Question Design

Designing an effective survey requires balancing several fac-
tors. Using large, existing programs has benefits, but: (a) the
subjects’ familiarity with and feelings towards the language

could significantly affect our results; (b) non-semantic cri-
teria like programming environments and error message
presentation [2, 38] could be a major confounding factor—
participants might evaluate these features instead of the
different behaviors, as we discuss in section 6; and (c) our
demands on subjects’ time could be very high, resulting in
little to no participation.
Instead, we created a multiple-choice quiz based on the

possible interactions between typed and untyped regions
of code. For the three kinds of types (base types, inductive
types, and coinductive types) and two kinds of boundaries
(typed-to-untyped and untyped-to-typed) this led to six basic
boundary-crossing questions. After crossing one boundary,
there are six second-order questions regarding the interac-
tions between a context (typed or untyped) with a value (via
reads from values of inductive type, and via reads and writes
for values of coinductive type). Finally, we ask whether a
value that crosses multiple type boundaries must live up all
the types for the rest of the program, or only some.
From this exhaustive list of questions, we created eight

small (3–6 line) programs from which we could infer an
exhaustive set of answers. The programs were written in
a conventional syntax. Our goal was to keep the number
of questions small to minimize fatigue and loss of subject
interest. Each program exhibits different behavior under at
least two semantics, and the set as a whole tells all three
apart (what Pombrio, et al. [25] call a “classifier”). We took
the error messages from the corresponding representative
Deep and Shallow languages and distilled them down to a
uniform format with a consistent amount of information (e.g.,
dropping the blame labels [11] provided in Typed Racket).
We call these error outputs as opposed to error messages.

As part of the minimization effort, the survey uses syntax
for only four kinds of values: integers, strings, arrays, and
objects. The first two are values of base type, the latter two
are values of coinductive type, and none of the above are nat-
urally described by an inductive type. To collect attitudes for
the different inductive-type checking strategies, the survey
includes two questions in which one behavior checks the
contents of array and objects that cross a boundary. Section 4
refers to this as a Deep∗ behavior.
In short, our programs were chosen to: (1) sample the

gradual typing design space, (2) distinguish between behav-
iors, and (3) fit in a short survey. In section 6 we discuss
several threats to validity and generalizability as a result of
our approach, as well as some mitigating factors.
Additionally, the survey asks about: preference between

typed and untyped programming, which typed languages
participants had used, what languages they are comfortable
with, what languages they use at work, how long they had
been programming, what they find types useful for, whether
they had ever used a gradually typed language, and whether
they agreed with the statement “Type annotations should
not change the behavior of a program” (to check whether
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participants agreed with an assumption of Erasure: see
section 5.1). For the student population, we removed the
question about work and instead asked which computer
science courses they had taken at their university.

3.2 Survey Distribution

We administered this survey to three populations:

• Employees at a major Silicon Valley technology com-
pany (henceforth, “software engineers”, or “S.E.”), re-
cruited by a former student now working there. We
estimated a completion time of 20 minutes (based on
student responses, below) and suggested advertising
it as a “survey on programming language type system
design”. Since recruitment was done on an internal
email list, we are not privy to further details. In four
days (May 30–June 2), we received 34 responses.
• Computer science students at a highly selective, pri-
vate US university (“students”). The survey was ad-
vertised on within-university social media and was
kept open for two weeks (April 25–May 9). The first
25 students were offered a $10 Amazon gift card. We
received 17 completions, not meeting our hoped-for
25 perhaps because the survey was only completed
and tested around the time of final exams. The average
completion time was 20 minutes, but subjects tended
to cluster around 10, 20, and 30 minutes instead of
being distributed uniformly.
• Workers on Mechanical Turk (“workers” or “Turk-
ers”). The task (“HIT”) was labeled “Answer a survey
about types in a programming language—PRIOR PRO-
GRAMMING EXPERIENCE REQUIRED”. The survey
was open for a week (June 13–June 20) and paid $2.50.
The description mentioned that this survey was on a
new programming language, and reiterated that prior
programming experience was required. Internally, we
thought that Turkers would spend five minutes on
the survey, but in our description we gave the highest
student average as an upper estimate on the time to
complete (30 minutes). We recorded 186 responses. To
eliminate bots and inattentive workers, we included
an attention check midway through the survey. Be-
sides the normal behaviors for a program, we added
an answer saying “Attention check: select like and un-
expected.” After filtering those Turkers who failed this
attention check, answered that they had never pro-
grammed before, or marked invalid gradually-typed
or programming languages (such as “yes”, “English”,
and “Spanish”), we had 90 remaining responses.

One of the software engineers had less than five years’
experience; four had between 5–10 years’ experience; and 29
had ten or more years’ experience programming. The most
common languages were Python (25), C++ (25), and Java

(22), but subjects had experience with JavaScript (13), C# (9),
Haskell (7), and other languages as well.

Four students had less than two years’ experience; another
four had between 2–5 years’ experience; and nine had 5 or
more years’ experience. Themedian number of courses taken
was nine. (We report the median because some students
gave answers like “too many [courses] to count”.) The most
common languages were Java (16), Python (15), and C (7),
with a smattering of other languages.

Fourteen of the Turkers had less than a year’s experience,
26 had between 1–2 years’ experience, 13 had between 2–5
years’ experience, eight had between 5–10 years’ experience,
and 29 had ten or more years’ experience. The most common
languages were Java (40), Python (32), JavaScript (28), and
C++ (27), out of around 40 languages in total.

4 Survey Results

Before you read further, we strongly encourage you
to do the survey (Appendix A) yourself, so you can
compare your answers to those of the subjects.

In this section, we present the results for each question in-
dividually.1 We do so in two parts: the questions for which
there is consensus (section 4.1), and the remaining questions,
which are contentious (section 4.2). We define consensus for
a question as a majority (>50%) of software engineers and a
majority of students having the same attitude towards Deep
and Erasure; the question is contentious otherwise.

Each question presents a small program and 2-3 behaviors
for the program. We break down the responses for each
question in the following order:

1. By strategy: Deep, Shallow, and Erasure. If a pro-
gram has only two behaviors, then two of the strategies
lead to the same behavior.

2. By population: S.E., Student, and MTurk.
3. By attitude: LE (Liked and Expected), LU (Liked and

Unexpected), DE (Dislike and Expected), and DU (Dis-
like and Unexpected). The figures plot the percent of
participants that selected each attitude.

4.1 Consensus

Looking at the first two questions (figs. 1a and 1b), we find:
• For both the software engineer and student popula-
tions, Erasure is both Disliked and Unexpected while
the Deep (and the eager-checking Deep∗, introduced
in section 3.1) behavior is Liked and Expected.
• The same consensus can still be seen (to a lesser extent)
with the MTurk population.

For the second question, there is no majority attitude to-
wards the Shallow behavior in any of the populations.

The software engineer and student populations Dislike
Erasure and Shallow but LikeDeep∗ for question 3 (fig. 1c).
1The full responses are available at: cs.brown.edu/research/plt/dl/dls2018/.
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1 var t = [4, 4];

2 var x : Number = t;

3 x
S.E Student MTurk

Deep →∗ Error: line 2 expected Number got [4, 4]

Erasure →∗ [4, 4]

Shallow→∗ same as Deep

L = Like D=Dislike E = Expected U =Unexpected

Figure 1a. Question 1 and responses

1 var t = ["A", 3];

2 var nums : Array(Number) = t;

3 var fst1 : Number = nums [0];

4 fst1
S.E Student MTurk

Deep∗ →∗ Error: line 2 expected Array(Number)

got ["A", 3]

Erasure →∗ "A"

Shallow→∗ Error: line 3 expected Number got "A"

L = Like D=Dislike E = Expected U =Unexpected

Figure 1b. Question 2 and responses

Question 4 (fig. 1d) is arguably our first complicated pro-
gram. The main type mismatch is between a method of an
object, obj0, and a typed object that is assigned to obj0.
There are several places where the mistake can turn into an
error since obj0 is untyped.

Interestingly, theway some of the respondents commented
on Deep’s error output implied they did not trace the dy-
namic execution of the program. Instead, it appears as though
they examined it statically. For example, some of them an-
swered that “Line 1 does not reference hello in any way”,
seeming not to divine that add, declared on line 1, is executed

1 var obj0 = {x = "A", y = 4};

2 var obj1 : Object{x : Number , y : Number}

= obj0;

3 var y : Number = obj1.y;

4 y
S.E Student MTurk

Deep∗ →∗ Error: line 2 expected Object{x:Number,

y:Number} got {x = "A", y = 4}

Erasure →∗ 4

Shallow→∗ same as Erasure

L = Like D=Dislike E = Expected U =Unexpected

Figure 1c. Question 3 and responses

1 var obj0 = {

k = 0,

add = function(i) { k = i } };

2 var obj1 : Object{

k : Number ,

add(i:String) : Void }

= obj0;

3 obj1.add("hello");

4 var v : Number = obj1.k;

5 v
S.E Student MTurk

Deep →∗ Error: line 1 expected Number got "hello"

Erasure →∗ "hello"

Shallow→∗ Error: line 4 expected Number got "hello"

L = Like D=Dislike E = Expected U =Unexpected

Figure 1d. Question 4 and responses

after line 3 calls it. Many of our respondents included their
reasoning for their particular selections: out of 34 software
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1 var nums : Array(Number) = [0, 1, 2];

2 nums [0] = "zardoz";

3 nums;
S.E Student MTurk

Deep →∗ Error: line 2 expected Number got "zardoz"

Erasure →∗ ["zardoz", 1, 2]

Shallow→∗ same as Erasure

L = Like D=Dislike E = Expected U =Unexpected

Figure 1e. Question 6 and responses

engineers, 24 left comments; out of 17 students, 11 left com-
ments; out of 90 Turkers, 63 left comments. They reported
that they expected the error on line 2 (15 for S.E.; 4 for stu-
dents; 2 for Turkers) or on line 3 (7 for S.E.; 4 for students; 4
for Turkers). Line 2 corresponds to checking that add should
not take in a String since it sets k to its parameter. Line 3
corresponds to the function application site. Several respon-
dents noted that in a large program, it is essential to show
which function application started the call in which the error
occurs. We left out such a stack trace in the error output to
keep our error outputs brief; we discuss this in section 6.
A majority of each population Likes the Deep behavior

in question 6 (fig. 1e), and a majority of software engineers
and students Dislike the Erasure and Shallow behavior.

Similar to question 4 (fig. 1d), question 7 (fig. 1f) is another
case where a majority of both software engineers and stu-
dents Disliked both behaviors. Twenty-four out of 34 of the
software engineers Disliked all of the behaviors. Twenty-five
of them Expected an error at line 3, where an array with an
incorrect type annotation is assigned to an untyped array
(as explained in their reasoning). Similarly, seven out of 17
students Expected an error at this location. Sixty out of 90
Turkers commented on this question. Seventeen of them
Expected an error at line 3. We discuss the implications of
so many participants Expecting an error at line 3 in more
detail in section 7.

4.2 Contentious

In contrast to the “Consensus” questions, a majority of the
software engineers and students have differing attitudes
towards Deep and Erasure in the remaining questions.

For question 5 (fig. 2a), Deep’s error output omits the func-
tion application site, similar to question 4 (fig. 1d). The 24

1 var x : Array(String) = ["hi", "bye"];

2 var y = x;

3 var z : Array(Number) = y;

4 z[0] = 42;

5 var a : Number = z[1];

6 a
S.E Student MTurk

Deep →∗ Error: line 4 expected String got 42

Erasure →∗ "bye"

Shallow→∗ Error: line 5 expected Number got "bye"

L = Like D=Dislike E = Expected U =Unexpected

Figure 1f. Question 7 and responses

1 var obj0 = {

k = 0,

add = function(i : Number) { k = i }};

2 var t = "hello";

3 obj0.add(t);

4 var k : String = obj0.k;

5 k
S.E Student MTurk

Deep →∗ Error: line 1 expected Number got "hello"

Erasure →∗ "hello"

Shallow→∗ same as Deep

L = Like D=Dislike E = Expected U =Unexpected

Figure 2a. Question 5 and responses

software engineers who explained their reasoning all ex-
pressed that the error should have been caught at line 3.
Really, the error is due to a mismatch between the function
definition on line 1 and the invocation on line 3; both line
numbers should appear in a proper error message [38]. Of the
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1 var obj0 = {

k = 0,

add = function(i : Number) { k = i }};

2 var t = "hello";

3 obj0.add(t);

4 var k : String = obj0.k;

5 k
S.E Student MTurk

Deep →∗ Error: line 3 expected Number got "hello"

Erasure →∗ "hello"

Shallow→∗ same as Deep

L = Like D=Dislike E = Expected U =Unexpected

Figure 2b. Question 5’ and responses

nine students who commented, five of them Expected an er-
ror at line 3. Fourteen out of the 65 Turkers who commented
with their reasoning answered that the error should be at
line 3. To us, “should” implies both Liking and Expecting
this behavior. Because the behavior is the same, if we ignore
the emphasis on line 1 in the error output, then these partic-
ipants Like and Expect this behavior. Figure 2b presents this
revised count and shows a preference for the Deep behavior.
Question 8 (fig. 2c) is similar to question 7 (fig. 1f)—we

are testing to see what happens when one value crosses
multiple boundaries between typed and untyped code. First,
we create a typed object (obj0) and export the object to
untyped code (obj1). We then import the object back into
typed code (obj2), assigning an incompatible type to the
object’s update method. We then export the object to un-
typed code and call the update method with a value that
matches the original type declaration. The Deep behavior
detects a type mismatch; Erasure and Shallow forget the
(incompatible) type for obj2. We see that a fair number of
participants Expect the error to happen on line 3 due to the
object assignment: out of the 23 software engineers who ex-
plained their reasoning, 19 of them Expected an error here;
out of six students who commented, four of them Expected
the error to be here. Out of the 57 Turkers who explained
their reasoning, three Expected an error here.

5 Preference Analyses

Designers of languages might want to seek preference infor-
mation from developers regarding certain design decisions.

1 var obj0 = {

k = 0,

update = function(i : Number) {k=i}};

2 var obj1 = obj0;

3 var obj2 : Object{

k : Number ,

update(i : String) : Void }

= obj1;

4 obj2.update (4);

5 var k : Number = obj2.k;

6 k
S.E Student MTurk

Deep →∗ Error: line 4 expected String got 4

Erasure →∗ 4

Shallow→∗ same as Erasure

L = Like D=Dislike E = Expected U =Unexpected

Figure 2c. Question 8 and responses

However, this information is potentially misleading if de-
velopers act differently on concrete programs compared to
how they answer abstract questions. We compare developers’
attitudes towards behaviors to their opinion on three back-
ground questions: whether type annotations should change
program behavior, whether they prefer typed or untyped pro-
gramming, and whether they have used a gradually-typed
language before.

5.1 Type Annotations

We asked respondents if they agreed or disagreed with the
statement: “Type annotations should not change the behavior
of a program”. Then for respondents that are consistent in
their attitudes towards Erasure, we check to see if their
attitude matches their answer to the background question.
From this we can judge whether participants are accurate
or inaccurate in self-reporting. We define being consistent

for a behavior (e.g., Erasure) to mean Liking the behavior
at least six times (out of eight) or Disliking the behavior at
least six times.2

We tabulate the consistent subjects’ opinion on Erasure
and their opinion on the effect of type annotations, resulting

2We do not filter for consistency on Deep or Shallow because one might
agree that types should affect behavior but disagree with the particular
behaviors exhibited by Deep and Shallow.
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Type annotations should not change

the behavior of a program.

Pop.
Erasure
Opinion Agree Disagree

S.E. Like 1 0
Dislike 14 19

Student Like 0 0
Dislike 2 14

MTurk Like 19 11
Dislike 18 25

Table 1. Annotation preference by Opinion on Erasure

in table 1. Summing the main diagonal of each sub-table
gives us the number of participants who are accurate in each
population: 20 for S.E., 14 for Student, and 44 for MTurk. The
anti-diagonal gives us the number of inaccurate participants:
14 for S.E., 2 for Student, and 29 for MTurk.

We see that most of the inaccurate participants fall into the
lower-left part of their sub-table. These respondents Agree,
in the abstract, that type annotations should not change the
behavior of a program, but when faced with actual programs,
Dislike Erasure.

5.2 Typed/Untyped Programming Preference

Is attitude towards a behavior tied to respondents’ prefer-
ences on typed or untyped programming? For each popula-
tion of consistent users, we look at their preference for typed
versus untyped programming based on the background ques-
tion. Since the question is open-ended, we code (in the social
science sense) participants’ responses for whether they pre-
fer typed, untyped, or gradually typed programming, or if
their preference is dependent on the size of the code. Tabulat-
ing the code for a participant and their opinion on Erasure
results in table 2.
Most participants’ opinion matches their programming

preference, except for the 24 Turkers who Like Erasure
behavior but prefer typed programming. Fourteen of these
Turkers consistently Like Deep behavior too, so we suspect
they either misunderstood the survey or are happy with all
kinds of behaviors.
We are also interested in whether programming prefer-

ence is related to having a specific attitude towards a be-
havior for a question. For each combination of population,
question, behavior, and attitude, we count the number of
users represented in table 2 who selected the attitude, then
split this count according to their coded preference for typed
or untyped programming. We use Fisher’s Exact test to see
if participants with different preferences have different atti-
tudes. Since we are doing so many comparisons, we adjust
our critical value (originally α = 0.05) with a Bonferroni cor-
rection for the number of different behaviors per question.
For example, if Deep and Shallow produce the same output,

Which do you prefer: typed or

untyped programming? (coded)

Pop.
Erasure
Opinion

Un-
typed Typed Gradual

Size
Dep.

S.E. Like 1 0 0 0
Dislike 0 26 1 6

Student Like 0 0 0 0
Dislike 1 15 0 0

MTurk Like 6 24 0 0
Dislike 8 32 0 3

Table 2. Type Preference by Opinion on Erasure

then there are only two different behaviors for that question,
so our adjusted critical value would be α = 0.025.

Based on the corrected Fisher test, we do not find any sig-
nificant relationship between attitude towards a behavior on
a question and programming preference for any population.

5.3 Gradual Typing Exposure

We analyze whether prior gradual typing exposure is cor-
related with Deep, Erasure, or Shallow being Expected
or Unexpected. We perform this analysis per behavior per
question since it is possible that experience has familiarized
a participant with one behavior but not the others. We test
using Fisher’s Exact test and use the Bonferroni correction
per question to adjust our critical value. We do not find any
significant relationship between prior exposure to gradual
typing and finding the behavior Expected or Unexpected for
any population, over any question, over any behavior.

6 Threats to Validity

It is possible that participants answered our survey not in
response to the questions and behaviors we tested but some-
thing else instead. We outline some of these concerns that
might have affected the validity of the study.
We used a feint to elicit participants’ attitudes towards

Deep, Erasure, and Shallow; namely, the introduction to
our survey claimed we were designing a new language. It is
possible that respondents exaggerated in their comments or
that they misrepresented their opinions to try to influence
the presumed language.
Some of our analysis relied on whether subjects thought

type annotations should change program behavior. It is pos-
sible, though, that we were measuring their definition of
“type annotations” or “programs” rather than their attitudes.3
Several of the software engineers commented that type anno-
tations should not change the behavior of “correct” programs
and should have compile-time errors for those that have type-
incompatible operations. One software engineer wrote that

3For example, we could have tried this study with Javadoc-style annotations
to see if their opinions change.
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they would expect typing a program to potentially change its
behavior but that adding type annotations should not, taking
annotations as a weaker version of type declarations.
Another ambiguous phrase that might have affected our

results is “type inference.” There are several versions of type
inference in languages, from unification in Haskell and ML-
languages to local type inference in C++, Rust, and Go. Thus,
saying our language does not have type inference could
mean different things to different respondents.
The way that respondents read the programs and error

outputs also could have affected our validity as we discussed
in section 4.1. For programs that cited the declaration of a
function where the program crashed rather than the function
call site, several respondents mentioned that the declaration
line did not mention the improperly typed value. It appears
they did not see the behaviors as results of running the
program but rather as static type errors.

Some participants might have been confused whether the
errors were runtime or static errors; we tried to prevent this
by saying that the programs passed the static type checker
(appendix A).

Threats to Generalizability The software engineers and
students who responded work for a highly selective software
engineering company and attend a highly selective univer-
sity, respectively. Other developers’ and students’ opinions
could be very different. On the other side of the spectrum,
we have the MTurk population, with a wide variety of expe-
rience and different incentives for taking the survey, so we
avoid general statements about the Turkers.
Another issue is ecological validity: participants are an-

swering questions instead of developing software, programs
are 3–6 lines long instead of hundreds or thousands spread
across different files, and programs produce error outputs in-
stead of error messages with detailed stack traces and blame
information. The interplay between types and refactoring is
not reflected in these questions. Some of these aspects we
give up to get more opinions on behaviors (see section 3 for
rationale). Regarding size, if a participant dislikes a behavior
when they can keep the program in their head, then they will
probably still dislike it when the program spans thousands
of lines and multiple files.

One might hypothesize that blame information would clar-
ify program behavior, but then the error message would be a
major confounding factor. If we include blame information,
we might accidentally measure how participants like its pre-
sentation, which would be a different threat to validity. To
try to measure only the behavior, we keep our error outputs
minimal and consistent between behaviors.
We paid two populations to complete this survey, which

might have changed their responses. All of the respondents
were self-selecting, which might introduce some bias.

It is possible, but unlikely, that developers would not run
into these types of programs. Our experience is that as code

grows, the frequency of typed/untyped interaction increases
and leads to the situations these programs represent.

Finally, the survey does not suggest any performance con-
sequences for different behaviors, despite evidence that Shal-
low adds overhead relative to Erasure [13] and that Deep
can slow a program by an order of magnitude [30]. We could
not think of a way to ask such questions about our hypotheti-
cal language in a meaningful manner; thus our results reflect
attitudes regarding semantics only, ignoring performance.
Three respondents mentioned the cost of checking types at
runtime (two were explaining their reasoning for a ques-
tion; the other was commenting on the language in general).
Other subjects could have implicitly factored performance
into their answers, but we cannot tell from their responses.

7 Language Design Implications

Developers do not expect a runtime system to ignore type
annotations—we see this in the majority attitude towards
Erasure for all questions for both the software engineers
and the students. The designers of Erasure systems must
therefore clearly communicate this choice to potential users.
The responses to questions 2 and 7 (figs. 1b and 1f) sug-

gest that developers prefer a strategy that type-checks the
elements of an untyped array immediately when the array
flows into a typed context (Deep∗) instead of waiting until
the array is accessed (Deep).4 Twenty-five out of 34 software
engineers (74%) commented on these questions, saying that
they Expected an error where the untyped array value was
assigned a type. Seven out of 17 students (41%) also Expected
an error at this location. Seventeen out of the 60 Turkers
(28%) who commented wanted an error at this location.

The responses to questions 7 and 8 (fig. 1f, fig. 2c) suggest
that a gradual typing system should remember the type
associated with a value even when it flows to an untyped
context. In particular, if a typed array flows to untyped code
and then flows back in to typed code at a different type, the
original type should also be enforced.

8 Related Work

8.1 User Studies

Miller et al. [21] found that there can be significant differ-
ences between a language as specified, as implemented, and
as understood by its users. They improve the Yedalog lan-
guage by making its specification more closely match its
user’s expectations. Our study is an initial step to finding
what programmers expect from a gradual type system; an
eventual goal is to have gradually-typed languages match
users’ expectations.
Tunnell Wilson et al. [34] have previously tried crowd-

sourcing language design decisions using Mechanical Turk.

4Typed Racket implements Deep, but its blame system reports the error
in terms of the point where the untyped value flowed in. This provides an
error similar to Deep∗, but is delayed until an element is accessed.
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They created surveys for a variety of language features to
investigate Turkers’ expectations and consistency. Their sur-
veys did not, however, cover gradual typing. More impor-
tantly, their survey lacked other populations as a reference,
whereas we survey two other populations. We see that Turk-
ers are not good proxies for software engineers at an elite
company. (If anything, students appear to be slightly better
proxies. On one hand, this is unsurprising because many of
these students go on to jobs at similar companies. On the
other hand, they lack the experience of those developers.)
Several researchers have studied the effect of static type

systems on development [10, 14, 15, 19], finding that they
reduce development time, help in maintainability, and aid
in using undocumented functions and APIs. These findings
motivate static types in gradually typed development too.
However, we are not measuring the effects of static types in
gradually typed languages but instead are getting developers’
attitudes towards different behaviors possible with static
type declarations.

Mezzetti et al. [20] studied whether Dart 1’s unsound type
system5 really does meet its design goals of being pragmatic
and not getting in the way of its users. They describe sound-
ness in Dart 1, show sound alternatives, and report the num-
ber of static type errors (called “warnings”) their altered
type-checker and runtime make. They conclude that some
of these sound alternatives would catch actual programmer
error while not introducing too many false-positives.

Groovy has optional type annotation checking. Souza and
Figueiredo [29] study how programmers use optional typ-
ing in a repository of Groovy programs. Type annotation
checking was a recent feature for Groovy at the time, so
type annotations in the code served mostly as documenta-
tion. They found that programmers use type annotations
more frequently in the interface of their modules, less fre-
quently in test classes and scripts, and that programmers’
use of types is inversely correlated to whether they have
programmed in a dynamically typed language before. We do
not ask developers how they use optional types, but we do
try to relate participants’ responses with their preferences
and exposure to gradually typed languages.

The Natural Programming project [24] took the language
children and adults use to solve problems as inspiration in de-
signing their language.We focus on one feature of a language
and survey people with programming experience, but the
purpose of our studies is the same: seeing what participants
think is natural (or in our case, Liked and Expected).

8.2 Gradual Typing

The Deep approach originates in the observation that higher-
order contracts [11] can dynamically enforce higher-order
types [16, 18, 31]. Typed Racket [32, 33], Gradualtalk [1], and
TPD [37] are three Deep systems.

5Dart 2 is type safe: dartlang.org/guides/language/sound-dart

The Erasure approach corresponds to optional typing [6].
An optional (or pluggable 6) type checker uses type annota-
tions only for static analysis; adding or removing annotations
does not affect the behavior of a program. Examples include:
Flow (flow.org), Pytype (github.com/google/pytype), rtc [26],
Hack (hacklang.org), Pyre (pyre-check.org), Typed Clojure [5],
mypy (mypy-lang.org), TypeScript [3], and Typed Lua [17].
The Shallow approach is based on the transient seman-

tics of Reticulated Python [35, 36]. Transient enforces type
constructors within typed code; it protects every typed con-
text against possibly-untyped values using first-order checks.
Pyret uses a similar strategy to enforce user-supplied type an-
notations. Every annotation in a Pyret program corresponds
to a runtime type-constructor check.
A fourth approach to gradual typing is the concrete ap-

proach pioneered in Thorn [39], implemented at scale in
C# [4] and Dart 2 (dartlang.org/dart-2), and adapted to satisfy
the gradual guarantee [28] in Nom [23]. Unlike the three ap-
proaches considered in this paper, every value in a concrete
language comes with a static type (Chung et al. [7] present
a formal comparison). This invariant makes it possible to
enforce types with first-order checks. To our knowledge,
no study has asked programmers for their preference be-
tween a language implementing the concrete approach and
a language with equally-expressive untyped code. However,
some of the questions in this survey cannot be asked in the
concrete approach, which does not support, e.g., passing an
untyped object into typed code.

9 Conclusions

Asking developers for feedback on program behaviors is
useful to refine and test design decisions. We have evidence
that professional developers and students dislike behaviors
that do not enforce statically declared types at runtime for
small programs (and expect that they would not like it for
larger programs spread across modules and files, either).
We also find that software engineers and students have

different attitudes towards these gradual typing behaviors.
Given the variety of opinions, it is essential that there is clear
documentation so that programmers understand how their
language behaves—especially if the behavior is not what
they expect. A combination of both positive and negative
examples would help with this. We propose our survey as a
minimal set of programs demonstrating language behavior.
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A The Survey

The following is a simplified LATEX reproduction of the sur-
veys we released through Qualtrics. To view the surveys in
HTML exactly as participants saw them, visit:

cs.brown.edu/research/plt/dl/dls2018/

Key: L = Like D=Dislike E = Expected U =Unexpected

We are designing a language that mixes typed and untyped code.We
want your opinion on what should happen when untyped values
flow into typed expressions.
Our language has static type checking but does not have type
inference. For example, this program would pass the static type
checker but would error at line 3:

1 var x : Number = 4;

2 var y = "hello";

3 x / y

The following 8 questions ask your opinion about possible results of
running a few programs that pass the static type checker (but may
still have runtime errors).We are not looking for feedback on syntax.

Question 1

1 var t = [4, 4];

2 var x : Number = t;

3 x LE LU DE DU
Error: line 2 expected Number got [4, 4] ⃝ ⃝ ⃝ ⃝

[4, 4] ⃝ ⃝ ⃝ ⃝

Question 2

1 var t = ["A", 3];

2 var nums : Array(Number) = t;

3 var fst1 : Number = nums [0];

4 fst1 LE LU DE DU
Error: line 2 expected Array(Number) got
["A", 3] ⃝ ⃝ ⃝ ⃝

Error: line 3 expected Number got "A" ⃝ ⃝ ⃝ ⃝

"A" ⃝ ⃝ ⃝ ⃝

Question 3

1 var obj0 = {x = "A", y = 4};

2 var obj1 : Object{x : Number , y : Number}

= obj0;

3 var y : Number = obj1.y;

4 y LE LU DE DU
Error: line 2 expected Object{x:Number,
y:Number} got {x = "A", y = 4} ⃝ ⃝ ⃝ ⃝

4 ⃝ ⃝ ⃝ ⃝

Question 4

1 var obj0 = {

k = 0,

add = function(i) { k = i } };

2 var obj1 : Object{

k : Number ,

add(i:String) : Void }

= obj0;

3 obj1.add("hello");

4 var v : Number = obj1.k;

5 v LE LU DE DU
Error: line 1 expected Number got "hello" ⃝ ⃝ ⃝ ⃝

Error: line 4 expected Number got "hello" ⃝ ⃝ ⃝ ⃝

"hello" ⃝ ⃝ ⃝ ⃝

(Turk only) Attention check: select LU ⃝ ⃝ ⃝ ⃝

Question 5

1 var obj0 = {

k = 0,

add = function(i : Number) { k = i }};

2 var t = "hello";

3 obj0.add(t);

4 var k : String = obj0.k;

5 k LE LU DE DU
Error: line 1 expected Number got "hello" ⃝ ⃝ ⃝ ⃝

"hello" ⃝ ⃝ ⃝ ⃝

Question 6

1 var nums : Array(Number) = [0, 1, 2];

2 nums [0] = "zardoz";

3 nums; LE LU DE DU
Error: line 2 expected Number got "zardoz" ⃝ ⃝ ⃝ ⃝

["zardoz", 1, 2] ⃝ ⃝ ⃝ ⃝

Question 7

1 var x : Array(String) = ["hi", "bye"];

2 var y = x;

3 var z : Array(Number) = y;

4 z[0] = 42;

5 var a : Number = z[1];

6 a LE LU DE DU
Error: line 4 expected String got 42 ⃝ ⃝ ⃝ ⃝

Error: line 5 expected Number got "bye" ⃝ ⃝ ⃝ ⃝

"bye" ⃝ ⃝ ⃝ ⃝

Question 8

1 var obj0 = {

k = 0,

update = function(i : Number) {k=i}};

2 var obj1 = obj0;

3 var obj2 : Object{

k : Number ,

update(i : String) : Void }

= obj1;
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4 obj2.update (4);

5 var k : Number = obj2.k;

6 k

LE LU DE DU
Error: line 4 expected String got 4 ⃝ ⃝ ⃝ ⃝

4 ⃝ ⃝ ⃝ ⃝
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