
Faster Joins� Self�Joins and Multi�Way

Joins Using Join Indices

Hui Lei Kenneth A� Ross�

Department of Computer Science�

Columbia University�

New York� NY �����

lei�kar�cs�columbia�edu

Abstract

We propose a new algorithm� called Stripe�join� for performing
a join given a join index� Stripe�join is inspired by an algorithm
called �Jive�join� developed by Li and Ross� Stripe�join makes a single
sequential pass through each input relation� in addition to one pass
through the join index and two passes through a set of temporary �les
that contain tuple identi�ers but no input tuples� Stripe�join performs
this e�ciently even when the input relations are much larger than main
memory� as long as the number of blocks in main memory is of the
order of the square root of the number of blocks in the participating
relations� Stripe�join is particularly e�cient for self�joins� To our
knowledge� Stripe�join is the �rst algorithm that� given a join index and
a relation signi�cantly larger than main memory� can perform a self�
join with just a single pass over the input relation and without storing
input tuples in intermediate �les� Almost all the I�O is sequential� thus
minimizing the impact of seek and rotational latency� The algorithm
is resistant to data skew� It can also join multiple relations while still
making only a single pass over each input relation� Using a detailed cost
model� Stripe�join is analyzed and compared with competing algorithms�
For large input relations� Stripe�join performs signi�cantly better than
Valduriez�s algorithm and hash join algorithms� We demonstrate cir�
cumstances under which Stripe�join performs signi�cantly better than
Jive�join� Unlike Jive�join� Stripe�join makes no assumptions about
the order of the join index�

Categories and Subject Descriptors� H���� �Database Management��
Systems � query processing
Keywords� Relational databases� join� query processing� decision sup�

port systems�

�This research was supported by a grant from the AT�T Foundation� by a David and
Lucile Packard Foundation Fellowship in Science and Engineering� by a Sloan Foundation
Fellowship� by NSF CISE award CDA��������	� and by an NSF Young Investigator award
IRI��	����
��

�

� Introduction

Decision support systems promise signi	cant added value to an organi�
zation
s information resources� The basic challenge today is to develop
e�cient query processing techniques that can turn this promise into reality
for a wide variety of potential users� The join operation of the relational
database model is the fundamental operation that allows information from
di�erent relations to be combined� Joins are typically expensive operations�
particularly when the relations involved are substantially larger than main
memory� Therefore� it is critical to implement joins in the most e�cient way
possible� A number of techniques have been developed to perform
ad�hoc�
joins� i�e�� joins performed without the bene	t of additional data structures
such as indices ��� �� �� �� ��� ����
In this paper� we consider joins of relations for which there exists a pre�

computed access structure� namely a join index ����� A join index between
two relations maintains pairs of identi	ers of tuples that would match in case
of a join� The join index may be maintained by the database system� and
updated when tuples are inserted and deleted in the underlying relations�
In situations where joins are taken often� the cost of doing this maintenance
can be more than o�set by the savings achieved in performing the join� A
number of commercial decision support systems are rumored to be using
join indexes �����
In ����� Valduriez proposed and analyzed a join algorithm that uses the

join index� The most important conclusion of that study was that� under
many circumstances� having the join index allows one to compute the join
signi	cantly faster than the
best� ad�hoc methods such as Hybrid hash�
join ���� However� it was shown in ���� that Valduriez
s algorithm utilizes a
signi	cant amount of repetitious I�O� Blocks are accessed often for only a
small fraction of their tuples� The same block may be read multiple times
on di�erent passes within the algorithm�
In ����� Li and Ross proposed two algorithms that signi	cantly improve

upon Valduriez
s algorithm� The algorithms are called
Jive�join� and
Slam�
join�� The two algorithms are duals of one another� and have very similar
performance� Jive�join range�partitions the tuple�ids of the second input
relation� then processes each partition separately� Slam�join forms sorted
runs of tuple�ids from the second input relation� then merges those runs�
The crucial virtue of both algorithms is that they make just a single

read pass through each input relation under lenient memory requirements�
Unlike hash�join algorithms� input tuples are not stored in intermediate
	les� intermediate 	les contain just short tuple identi	ers� Other important
features of those algorithms include� �a� Almost all of the I�O performed is
sequential� �b� A block of an input relation is read if and only if it contains
a record that participates in the join� �c� Skew does not adversely a�ect the
performance� �d� One can join multiple relations� retaining the single�pass
property of the inputs� by using multidimensional data structures�
In this paper� we propose a new algorithm that is similar to the Jive�join

�

algorithm of ����� Our new algorithm� which we term
Stripe�join��� has
several important advantages over Jive�join�

� Jive�join requires a 	xed ordering of the join index� If the join index
is not stored in such an order� one would have to 	rst sort it before
applying Jive�join� There is no assumption made about the physical
order of the join index in Stripe�join� Thus� Stripe�join can avoid this
sorting step�

� Stripe�join is symmetric with respect to all relations� The join index
is 	rst processed� then all participating relations are processed in a
symmetric fashion� Jive�join� on the other hand� treats one relation in
particular as
special� by reading it at the same time as the join index�
The symmetry of Stripe�join has an important performance bene	t�
For joins in which a relation R appears more than once� Stripe�join
can make a single pass through R to cover all of the instances of R in
the join� In particular� self�joins can be performed with just one pass
through the self�joined relation� We believe that the symmetry prop�
erty also renders Stripe�join easily extensible to parallel architectures�

� Stripe�join delivers better performance under some circumstances� in
particular when the cardinality of the join index is high�

Like Jive�join� Stripe�join uses a vertically partitioned data structure for
the join result� �We do not assume that the inputs are vertically partitioned��
Attributes from the 	rst input relation are stored in a separate 	le from those
of the second input relation� using transposed 	les ���� Attributes that are
common are placed arbitrarily in one of the two vertical fragments� There is
a one�to�one correspondence between records in each vertical partition� The
nth record in the 	rst vertical fragment matches the nth record in the second�
Such a representation has a negligible performance impact on processes that
read the join result ����� It is our understanding that vertical partitioning is
being deployed in some current proprietary commercial database systems�
including Sybase IQ and Red Brick�
Our main contributions include�

� The proposal of a novel algorithm for joining relations using a join
index� To our knowledge this is the 	rst algorithm that� given a
join index and a relation signi	cantly larger than main memory� can
perform a self�join with just a single pass over the input relation and
without storing input tuples in intermediate 	les�

� The analytic performance analysis of the algorithm using a detailed
cost model� demonstrating e�cient single�pass performance under le�
nient memory requirements�

��Stripe
 is both an acronym �Symmetric Treatment of Relations that have a join
Index and that are Particularly Extensive� and a phrase intended to allude to the vertically
partitioned nature of the join result�

�

� Analytic comparisons of our algorithms with other algorithms� demon�
strating signi	cant performance improvements under several condi�
tions�

The structure of the paper is as follows� In Section � we discuss our
assumptions and present the vertically partitioned data structure for the
join result� In Section � we present our Stripe�join algorithm� which is
then analyzed in Section �� Section � compares our algorithms with other
algorithms� Section � discusses various extensions of our algorithms� We
conclude in Section ��

� Background

We consider an r�way join of r relations� �A conventional join has r �
�� while the most common type of join is probably a two�way join� the
description of our algorithms is only slightly more complex in the r�way
case� and so we simply present the r�way join algorithm directly�� The input
relations to be joined are denoted by R�� � � � � Rr� We assume for simplicity
that a tuple�id for each input relation is simply the
position� of the tuple
within the relation �eg�� �� �� � � ��� However� our algorithm applies for any
sequential physical addressing scheme for which input relation records in
one block have smaller tuple�id values than the records in the next block�
Tuple�ids are used in the join index and in the intermediate results of our
join algorithm�
A join index is the set of tuples �t�� � � � � tr� of tuple�ids such that the tuple�

ids ti from Ri refer to tuples that match according to the join condition� We
shall treat the join index as a relation� and denote it by J � We do not assume
that the join index is physically ordered by any attribute�
For simplicity� we shall assume that all of the attributes of each Ri are

required in the join result� The extension of our analysis to cases where
fewer attributes are required is straightforward�
We do not assume that any indexes are available on the input relations�

We also do not assume that either input relation is physically ordered by
any attribute�
Following ���� we assume that separate disks are used to store �a� join

indices� �b� temporary 	les� �c� input relations� and �d� the output result�
By using separate disks we avoid unnecessary disk seeks between accesses�
The input relations may reside on the same disk as each other�� Similarly�
we can store all temporary 	les on one disk� �This kind of con	guration is
recommended by most commercial vendors��

�Actually� for the Stripe�join algorithm one can store the join index on the same disk
as the input relations with no loss of performance�

�

��� A Vertically Partitioned Data Structure for the Join

Result

We use a vertically partitioned data structure known as a transposed 	le
��� to store the join result� Attributes from each Ri that are present in the
join result are stored in a separate 	le �denoted JRi�� Join attributes that
are common to more than one relation are placed arbitrarily in one of the
vertical fragments� The 	rst entry in each of the 	les corresponds to the
	rst join result tuple� the second entry to the second join result tuple� and
so on� There is no need for any additional stored tuple�id or surrogate key�
Each vertical fragment is in the same sequence� This layout is summarized
in Figure � for r � �� The join result JR is shown on the left in a traditional

Traditional Layout

Block 1

Block 2

Block 3

.

.

.

1234 John Smith 12/31/64 21:54

3456 Fred Jones 10/02/66 12:01

9876 David Brown 01/20/71 05:15

1364 John Adams 11/30/64 07:17

7356 Mary Jones 10/22/56 01:01

9898 Alice Rogers 07/20/81 11:11

6566 Mark Black 12/11/54 03:33

6566 Mark Black 04/02/62 23:32

1111 Pat Davis 11/19/70 15:55

JR(Num,Name,Date,Time)

New Layout

.

.

.

1234 John Smith

3456 Fred Jones

9876 David Brown

1364 John Adams

7356 Mary Jones

9898 Alice Rogers

6566 Mark Black

6566 Mark Black

1111 Pat Davis

.

.

.

JR1(Num,Name)

.

.

.

JR2(Date,Time)
12/31/64 21:54

10/02/66 12:01

01/20/71 05:15

11/30/64 07:17

10/22/56 01:01

07/20/81 11:11

12/11/54 03:33

04/02/62 23:32

11/19/70 15:55
.
.
.

Figure �� Physical Data Layout for the Join Result�

layout� and on the right in a partitioned layout as JR� and JR�� The input

�

relation R� has attributes Num and Name� and R� has attributes Num� Date
and Time�
The advantage of the partitioned representation is that we will be able

to write each vertical partition in a separate phase of the algorithm� getting
better utilization of main memory�

� Stripe�join

In this section we present a new algorithm called Stripe�join for performing
joins using a join index� The algorithm range�partitions the join index into
a number of temporary 	les� The input relations are then processed with
their corresponding temporary 	les to generate the vertical partitions of the
join result�

Algorithm ���� �Stripe�join� The algorithm consists of three steps�

Step �

For i � �� � � � � r we choose ki � � tuple�ids as partitioning elements for
Ri� The aim is to evenly partition the tuples participating in the join�
We defer the discussion on how the partitioning values are chosen until
Section ���� Thus there are y � k�k� � � � kr partitions altogether� we number
them �� � � � � y in lexicographic order� We refer to the collection of y�ki
partitions corresponding to a single partitioning range over Ri an i�segment�
For each i � �� � � � � r we allocate in memory ki temporary �le bu�ers

Z�
i � � � � � Z

ki
i each of length v blocks�

Step �

We scan J sequentially� For each join�index tuple �t�� � � � � tr� we 	rst identify
the partition to which this tuple belongs� based on the R�� � � � � Rr tuple�
ids� Suppose it is partition number l �between � and y�� We also identify
the segment to which this tuple belongs within each relation Ri� Thus
we have for each i � �� � � � � r an i�segment number gi �between � and ki�
corresponding to the position of ti among the partitioning elements for Ri�
For each i � �� � � � � r we write the pair �ti� l� to Zgi

i � If the bu�er Zgi
i is

	lled� then it is �ushed to disk� after which it can accept new values� When
all tuples have been processed in this way� all bu�ers are �ushed to disk�
and the memory for the bu�ers is deallocated�
After 	nishing Step �� we have generated k� � � � � � kr temporary 	les

which we use in Step � below�

Step �

We perform the following steps for each i in f�� � � � � rg�
For each of the ki temporary 	les �each corresponding to an i�segment�

we perform the following operations� We read into memory the whole

�

temporary 	le� processing each �ti� l� pair by appending the ti value to a
list corresponding to the l value� We call these lists the grouped lists�
Additionally� we compose a second array consisting of all the ti values

from the temporary 	le� sorted in tuple�id order with duplicates removed�
We then retrieve tuples from Ri in order� retrieving only blocks that contain
a matching record according to our sorted array of tuple�ids� We stop when
we reach the end of the array�
We are now ready to write the segment
s portion of JRi� There are y�ki

partitions in the segment� corresponding to the di�erent values of l in the
�ti� l� pairs� We write the full Ri tuples for each partition to a separate 	le�
in the order of the corresponding grouped list above� �We could use binary
search to locate the Ri tuples in order� or alternatively store the Ri tuples
in a hash table by hashing on the tuple�id��
By the time we have 	nished with the 	nal i�segment� we have generated

all of JRi� The partitions of JRi can be linked together� into a single 	le�
Once we have performed Step � for all values of i we have the required join
result� �

We illustrate the use of Stripe�join using an example based on ����� but
without an ordered join index�

Example ���� Consider the two relations Student and Course� and their
join result� given below� This particular join is a natural join in which we
match the course numbers in the two input tables� To enable the reader to
keep track of various duplicate student tuples as they are processed through
the algorithm� we have provided superscripts to help distinguish them�

Student Course

Smith� ���
Smith� ���
Jones ���
Davis� ���
Davis� ���
Davis� ���
Brown ���
Black ���
Frick ���

Course Instructor

��� Green
��� Yellow
��� Green
��� White
��� Evans
��� Alberts
��� Beige
��� Red
��� Grey

Relation Student Relation Course

�We can physically place the partitions of JRi contiguously on disk if we keep track in
Step � of the number of tuples in each partition� In this case the linking step is trivial�

�

Student Course Instructor

Brown ��� Yellow
Smith� ��� Green
Jones ��� White
Smith� ��� Grey
Davis� ��� Alberts
Davis� ��� Yellow
Davis� ��� Beige
Black ��� Green
Davis� ��� Evans

S�id C�id

� �
� �
� �
� �
� �
� �
� �
� �
� �

Join Result Join Index

For the purposes of exposition� we assume that each input record occupies
one disk block� We also assume that we have three partitions for each
relation �k� � k� � �� y � �� and that each bu�er can hold just one input
record at a time� We choose partitioning values � and � for the tuple�ids
of the matching Student tuples� and values � and � for the tuple�ids of the
matching Course tuples� The partition numbering is summarized in the
following diagram�

Student Course tuple�id
tuple�id ��� id� � ��� � �id� � ��� � �id

��� id� � � � �
��� � �id� � � � �
��� � �id � � �

After the 	rst step� we have allocated six bu�ers� three for each of Student
and Course� After the second step� we have partitioned the join index �and
added partition numbers� as follows�

Student

���

�����
�����
�����

���

�����
�����

���

�����
�����
�����
�����

Course

���

�����
�����
�����

���

�����
�����
�����

���

�����
�����
�����

In Step � of the algorithm� for each temporary 	le� we read in and divide
the temporary 	le sequences into the grouped lists according to the partition
number �the second element of the pair�� We also generate a sorted list of
tuple�ids appearing in the 	le� The corresponding tuples are then read from
the input relation and written to fragments of the join result� one fragment
for each partition� This process is summarized in Figure ��
The left column in Figure � contains the grouped list for each partition

number� The middle column contains the tuple�ids in sorted order �without
duplicates�� and the right column contains the matching records from the
input relation that are read in� The records are written to the output in the
order of the grouped lists� Since we generate one partition at a time� we need

�

Student

��� id� �
� � � � Smith�

� � � � Smith�

� � � � Jones

��� � �id� �
� � � � Davis�

� � � � Davis�

	 � nil

��� � �id
� � � � Davis�

� � 	 � Brown

 � ��� 	 Black

� � �

� Smith�

� Jones

� Smith�

� Davis�

� Davis�

� Brown

� Black

 Davis�

Davis�

Course

��� id� �
� � � � ��� Green
� � � � ��� Yellow
� � �

��� � �id� �
� � � � ��� Green
� � � � ��� White
� � � � ��� Evans

��� � �id
� �
 � ��� Alberts
	 � nil � ��� Beige

 � ���
 ��
 Grey

� � �

� ��� Green

� ��� Yellow

� ��� Yellow

� ��� White

� ��� Evans

� ��� Green

� ��
 Grey

 ��� Alberts
��� Beige

Figure �� Step � of Stripe�join for Example ����

only one output bu�er in memory to generate the partitions� Concatenating
the various partitions of the generated join result in order of the partition
numbers� our output looks like this�

Student

Smith�

Davis �

Brown

Jones

Davis�

Black

Smith�

Davis�

Davis�

Course Instructor

��� Green

��� Yellow

��� Yellow

��� White

��� Evans

��� Green

��� Grey

��� Alberts
��� Beige

The output is in two vertical fragments JR� and JR�� The horizontal lines
denote the boundaries between the partitions� The result is the same as
that given initially� except for the order of the tuples� �

�

An important aspect of Stripe�join is that tuples from the various relations

line up� within each partition� The design of the algorithm ensures that
within a partition the tuples are in the same order as they were in the initial
join index� ensuring that the tuples do in fact line up�
Stripe�join shares a number of important characteristics with Jive�join�

as illustrated by Example ���� �a� The algorithm reads only participating
records� Records for student Frick and instructor Red are not read from
disk� saving I�O� �b� Participating records are read just once� even when they
participate multiple times� �c� By using bu�ering� the algorithm can operate
while keeping at most three full records �from either relation� in memory
at any one time� together with some tuple�ids and partition numbers� Both
input relations are larger than three records� �d� Only one pass over each
input relation is made� In contrast� with main memory capable of holding
just three records �plus some tuple�ids�� Valduriez
s algorithm would make
three passes through the Course relation� We shall discuss the improvements

that Stripe�join makes over Jive�join in Section ��

��� An Enhancement

Notice that in Example ��� the output result partitions for the Course

relation are actually generated in the same order that they appear in the
join result� One could combine the partitions into a single large unit within
Step � of the algorithm� thus generating

��� Green
��� Yellow
��� Yellow
��� White
��� Evans
��� Green
��� Grey
��� Alberts
��� Beige

in one unit rather than in eight partitions� As we shall see� reducing
the number of separate output partitions will improve the performance by
requiring fewer disk seeks�
We can apply this enhancement fully to just one of the participating

relations� because the order of the partition numbers can agree with at most
one of the input relations
 segment orders� However� it is possible to apply
it partially to other relations�
For example� consider a three�way join in which each relation is parti�

tioned in two �k� � k� � k� � ��� Thus there are eight partitions in total�
numbered � to �� For R�� we may process the partitions as f�� �� �� �g in the
	rst ��segment� followed by f�� �� �� �g in the second ��segment� Thus we
can fully utilize the enhancement for this relation� For R�� we may process
the partitions as f�� �� �� �g in the 	rst ��segment� followed by f�� �� �� �g in
the second ��segment� We can reduce the e�ective number of partitions by

��

half by writing partitions � and � to the same output unit� Similarly� we
can write partitions � and �� partitions � and �� and partitions � and � each
together� �It does not signi	cantly help to write � and � to the same unit
of output that � and � were previously written to because intervening seeks
are still necessary�� For R� we would process f�� �� �� �g and f�� �� �� �g in
the two segments� with no opportunities for applying the enhancement�
Let us suppose that the R� partition order is the highest�order component

of the partition order� Then R� can reduce the number of partitions to ��
for i � �� � � � � r� Ri can reduce the number of partitions to k� � � � ki from y�

��� Self�Joins

There is an important specialization of the Stripe�join algorithm for the case
where a relation is joined with itself� For an example of a self�join� consider
a relation

Employee�ssn�name�salary�manager�ssn�

and suppose we wish to compare the salaries of employees with the salaries
of their managers� In order to do so we join Employee with itself� equating
ssn in one copy with manager�ssn in the second�
Suppose we had a join index for this join� i�e�� a set of pairs of tuple�ids

of employees
 records with tuple�ids of their managers
 records� Then we
could apply Stripe�join as described above� However� that would result in
two passes over the Employee relation� We can do better by coalescing the
two passes over the Employee relation in Step � of the algorithm into one
pass during which time we do the work for both of the copies of Employee in
the join� This optimization can be used whenever a relation appears more
than once in the join�

Algorithm ���� �Stripe�join with Repeated Relations�
The algorithm is identical to Algorithm ��� except as noted below�
In Step � we require any relation that appears more than once in the join

to be partitioned in the same way each time it is mentioned� Thus the ki
and kj values �and the corresponding partitioning elements� are the same if
Ri and Rj are actually the same relation�
We modify Step � as follows� Suppose that Ri� � � � � � Rin is the �maximal�

set of instances of the same relation R in the join� with n � �� Let k �
ki� � � � � � kin � For j � �� � � � � k we proceed as follows�

We read into memory the jth temporary 	le from all of Ri� � � � � � Rin �
Thus we have n temporary 	les� one per relation instance� in memory
simultaneously� Each of the temporary 	les is separately grouped into
lists as before� However� we produce only one combined duplicate�free
list of tuple�ids for tuples of R that participate in the join� Those tuples
of R mentioned in the list are read sequentially into memory� The
remainder of this step is as before� we output the various partitions
for each of Ri� � � � � � Rin while we have the R tuples in memory�

��

If more than one relation appears multiple times� then we modify the
algorithm as above for each repeated relation� �

� Performance Analysis

��� A Detailed Join Cost�Model

A table of symbols is given in Table �� A table of system constants� with
their value �used in the analytic comparisons� is given in Table �� The
constants used follow ��� �� ���� and correspond to the Fujitsu M���� disk
drive�

Symbol Meaning

jRj Number of blocks in R�
jjRjj Number of tuples in R�
� R� Width in bytes of a tuple in R�
r Number of participating

relations�
t Size in bytes of a tuple�id� in�

memory pointer� or integer value�
�i Semijoin selectivity� i�e�� the pro�

portion of the tuples in Ri that
participate in the join�

Y �k� d� n� Function to estimate the number
of block accesses needed to re�
trieve k tuples out of n tuples
stored in d blocks �����

m Size of main memory� in disk
blocks�

� Blocks in an input relation bu�er�
NS Seeks in an algorithm�
NI�O I�O requests in an algorithm�

NX Block transfers in an algorithm�

Table �� Table of symbols

Haas� Carey and Livny have proposed a detailed I�O cost model in which
seek time and rotational latency are explicit ���� These authors reexamine
a number of ad�hoc join methods using their cost model� and demonstrate
that the ranking of join methods obtained by using a block�transfer�only
cost model for I�O may change when the same algorithms are analyzed using
their more detailed cost model� In this paper� we shall use the detailed cost
model from ��� to measure the cost of various join algorithms� The total I�O
cost of a join algorithm is measured as

NSTS �NI�OTL �NXTX �

��

Symbol Value Meaning

b ���� Bytes in a disk block�
c �� Disk blocks in a cylinder�
D ������ Blocks in a disk device�
TS ��� Time for an average disk

seek �milliseconds��
TL ��� Average rotational

latency �milliseconds��
TX ��� Block transfer time

�milliseconds��

Table �� Table of system constants

In other words� the total I�O cost of an algorithm is the sum of three
component costs� seek cost� latency cost� and page transfer cost� Each
of these costs is in turn the product of the number of actions multiplied by
the average time that action consumes�
In this paper we ignore CPU cost� and focus on the I�O cost� The main

reasons for this choice are �a� that CPU cost is signi	cantly smaller than the
I�O cost� and �b� almost all of the CPU�intensive work can be done while
waiting for disk I�O� Furthermore� I�O cost will be even more dominant
in the future� as processor and memory speeds are increasing 	ve to ten
times faster than I�O device speed� Due to space constraints� we defer the
presentation of our CPU cost model to the full version of this paper� The
dominance of I�O cost over CPU cost for Jive�join has been demonstrated
experimentally in �����
We perform input bu�ering on the input relations in order to reduce seek

and rotational latency� If the input bu�er size is � blocks� then that is the
minimal unit of information transfer from the input relations� we must read
a ��block chunk if any of the constituent blocks contains a participating
tuple� In our analytic graphs we use a value of � equal to the cylinder size
c� i�e�� �� blocks�
Some of our disk output is not fully sequential� We shall allocate bu�ers

and optimize their size to get the best I�O cost�
In some stages of our algorithm� records are accessed in order from a

contiguously stored relation� We can approximate the total seek time for
one pass through relation R as �jRj�D times the average seek cost� where
D is the capacity �in blocks� of the disk unit� We count three times� the

average� seek cost� estimating that the average seek cost is equal to one
third of the time taken to move from one edge of the disk to the other� This
rough approximation assumes that seek time can be accumulated in a linear
fashion� and that there are no competing accesses to the disk device� If there

�One can show analytically that for linear seek times the time taken to traverse the
whole disk is� on average� three times the time taken to move from a random cylinder to
another random cylinder on the disk�

��

was contention on the disk device between cylinder accesses� then we would
have to count one seek per cylinder� since the seeks between cylinders would
not necessarily be small�
We assume that in�memory sorting is done in�place�
In this paper we do not address the cost of maintaining the join index�

Blakeley and Martin have comprehensively analyzed the tradeo� between
join index maintenance cost and the join speedup ����

��� Memory Requirements

We need Step � and Step � to 	t in main memory� Ignoring insigni	cant
terms� the following inequality must hold�

v�k� � � � �� kr� � m� ���

Each iteration of Step � must also 	t in main memory� We assume that
the tuples in the ki temporary 	les for relation Ri are evenly distributed
�see Section ����� The sorted tuple�id list can be discarded incrementally
�and the memory reused� as the Ri records are read� Thus� we get

jJ j�r � �ijRij � kim ���

assuming that all of the attributes of Ri are required in the join� Combining
Equations � and � with the constraint that v � � yields

m �
q
jJ j� ��jR�j� � � �� �rjRrj� ���

Equation � speci	es the minimum amount of memory necessary for Jive�join
to perform with a single pass over the input relations� This is a very reason�
able condition� stating that the number of blocks in main memory should
be at least of the order of the square root of the number of participating
blocks in all relations� and the number of blocks in the join index�
To get an idea of how lenient this constraint is in practice� imagine we had

��� megabytes of main memory� that disk blocks were �K bytes� and that we
had a one�to�one two�way join between R� and R� with full participation by
both relations� Assuming that tuples in the input relations are much wider
than a tuple�id� we would be able to apply Stripe�join with a single pass
through each input for inputs of total size up to � terabytes� �For larger
relations� Stripe�join still applies� but with higher cost� see Section ���
In Section ��� we will show how to choose optimal values of ki and v�
For Self�joins we keep more information in memory during Step �� Let us

consider an r�way self join of a relation R� We can estimate the combined
semijoin selectivity over the r uses of R as � � � � �� � ��� � � � �� � �r� by
assuming that the semijoin selectivities are independent� Let k � k� � � � � �
kr� Equation � now becomes

jJ j� � jRj � km ���

��

since we keep r sets of tuple�ids in memory at once� rather than one�
Consequently� Equation � becomes

m �
q
rjJ j� � jRj� ���

Equation � is an improvement over Equation � �with right�hand�side
pjJ j� ��� � � � �� �r�jRj

for self�joins� when the jRj term dominates the jJ j term�

��� Choosing the Partitioning Values

We now show how to choose the partitioning elements in Step � of Stripe�join�
A 	rst attempt might be to partition the tuple�ids evenly� Since the number
of tuples in each Ri is known� we could simply divide the tuple�id range into
ki equal�sized partitions�
This approach would work if the distribution of tuples in the join was

uniform� However� for distributions with signi	cant skew� we may 	nd that
some partitions contain many more participating tuples than others� For all
partitions to 	t in main memory� we would have to ensure that the largest
partition� together with its portion of the temporary 	le� 	ts in main memory
in Step �� We thus waste some memory for all other partitions�
Fortunately� we can do better� In fact� we can perfectly partition the

tasks of Step � to just 	t into memory if we are prepared to perform a
preprocessing step on the join index� The join index provides us with all the
information we need about skew� A preprocessing step like that of ���� can
examine the join index and calculate the partitioning elements that divide
the tasks of Step � into equal�sized chunks�
Another alternative is for the system to maintain a set of partitioning

values at the same time that it maintains the join index� In a low�update
environment such as a decision support system� such an approach would be
feasible�

��� Measuring the Cost

We now calculate the values of NS� NI�O� and NX in order to measure the
cost of Stripe�join� We do not include the block transfer cost of writing the
output because it is the same for all algorithms� We let z denote the total
size of the temporary 	les� z � jJ j � jJ jd�log� y���e�t since we need log� y
bits to represent the range �� � � � � y� We assume that the partitioning values
have already been chosen and do not need any signi	cant I�O to read in�
Thus� there is no measured I�O in Step ��
The number of seeks in Step � is �jJ j�D for J � plus one seek for each bu�er

�ush� The number of bu�er �ushes is z�v� The number of seeks in Step �
is ��jR�j� � � �� jRrj��D for R�� � � � � Rr �since each Ri is read sequentially��
k� � � � �� kr � �z�D for reading the temporary 	les� plus one seek for each
time one starts a new partition in the output result� Using the enhancement
of Section ���� we count the accesses in one dimension �say R�� as sequential�
with total seek cost ��jjJ jj� � R� ���Db� in the other dimensions the total

��

seek cost is �r � ��y�k� � y� Thus� we obtain the formula

NS � �
D �jJ j� jR�j� � � � � jRrj
�jjJ jj� � Rr � �b� z�
�k� � � � �� kr � z�v � �r � ��y�k� � y�

The number of I�O requests in Step � is jJ j�� for J and z�v for writ�
ing the temporary 	le bu�ers� The number of I�O requests in Step � is
Y ���jjR�jj� jR�j��� jjR�jj� � � � � � Y ��rjjRrjj� jRr j��� jjRrjj� for reading all of
the Ri relations� plus k� � � � � � kr for reading the temporary 	les� plus ry
for writing the join result� Thus� we obtain the formula

NI�O � jJ j�� � Y ���jjR�jj� jR�j��� jjR�jj� � � � �
�Y ��rjjRrjj� jRrj��� jjRr jj�
�k� � � � �� kr � z�v � ry�

The number of block transfers in Step � is jJ j for reading J and z for
writing the temporary 	les� In Step � we read the temporary 	les� with cost
z� The cost for reading the input relations is �Y ���jjR�jj� jR�j��� jjR�jj� �
� � � � �Y ��rjjRrjj� jRrj��� jjRr jj�� Thus� we obtain the formula

NX � jJ j� �z � �Y ���jjR�jj� jR�j��� jjR�jj� � � � �
��Y ��rjjRrjj� jRrj��� jjRr jj��

Now we are in a position to choose optimal values for k�� � � � � kr and v�
The algorithm cost is an increasing function of each ki� and a decreasing
function of v� Thus we wish to minimize each ki and maximize v�
Thus we can interpret Equation � as stating that

ki � �jJ j�r � �ijRij��m�

Equation � then implies that

v �
m�

�jJ j�r � ��jR�j� � � � �� �jJ j�r � �rjRrj� �

In an analogous fashion we can determine the cost of r�way self�joins using
Stripe�join� We obtain

k � �jJ j� � jRj��m
v � m��r�jJ j � � jRj�
NS � �

D �jJ j� jRj� jjJ jj� � R� �b� z�
�rk � z�v � �r � ��y�k � y�

NI�O � jJ j�� � Y �� jjRjj� jRj��� jjRjj�
�rk � z�v � ry�

NX � jJ j� �z � �Y �� jjRjj� jRj��� jjRjj��

��

��� Selection Conditions

Stripe�join applies when one uses a subset of the join index rather than the
full join index� Thus one could apply selection conditions to the input rela�
tions
 indexes �which are much smaller than the input relations themselves��
combine the lists of resulting tuple�ids �using union for an
or� condition
and intersection for an
and� condition ������ and use the result to semijoin
the join index ����� Stripe�join can then be applied to the input relations
and the reduced join index� Similarly� if the join index also included the join
attribute value �for easy maintenance� then selections on the join attribute
could be made on the join index itself�

� Comparing Stripe�join with Other Algorithms

In this section we compare Stripe�join with several other algorithms� We
present performance graphs for several example scenarios that illustrate the
analytically derived cost for each algorithm�

��� Hash Joins

There are several variants of hash joins in the literature� Two important
variants are Grace�hash join ���� and Hybrid�hash join ���� In Grace�hash
join the input relations are hashed on the join attribute in such a way
that the disk�resident hash buckets of one relation 	t in memory� In a
second phase the algorithm performs an in�memory join of the records in
the corresponding hash�buckets� Hybrid�hash join additionally keeps one
hash bucket of the 	rst relation in memory� When the 	rst relation is not
much larger than main memory the in�memory hash bucket signi	cantly
reduces the amount of I�O� The I�O performance of Hybrid�hash join has
been studied in ��� �� ���� the graphs in this paper use the formulas from
�����
One can formulate a version of Grace�hash join that applies speci	cally

to self�joins� During an initial pass of the relation to be joined� one can
simultaneously hash on both attributes that are matched for the join� Thus
one can save an entire pass through the input relation� although one still
has to write and read the two disk�resident hash tables� We refer to this
algorithm as a
Self�hash� join� Its performance characteristics can easily be
derived from those of Grace�hash join ���� ��� The same technique may be
incorporated into Hybrid�hash join when performing self�joins� but we shall
not consider it further� For input relations signi	cantly larger than main
memory� Hybrid�hash delivers essentially the same performance as Grace�
hash ����

��� Valduriez�s Algorithm

Assuming the join index is clustered on one of the tuple�id 	elds �say� R�
tuple�id�� Valduriez
s algorithm joins two input relations as follows �����
As much of J and R� as will 	t in memory is read in sequentially from

��

secondary storage� Then the in�memory portion of the join index is sorted
by the tuple�id value from R� and R� is scanned sequentially for the tuples
that match the memory�resident J tuples� For each R� tuple retrieved� the
corresponding R� tuple is located in memory� and the resulting join tuple
is written to the output 	le� The above process is repeated until J and R�

have been exhausted� This algorithm requires that R� be scanned multiple
times when J and R� cannot 	t in memory at once� See ���� for the exact
cost formula�

��� Jive�join

Jive�join improved on previous join techniques by allowing one to perform
the join using a single sequential scan of the input relations� Stripe�join was
inspired by Jive�join�

Example ���� Figure � shows a graph �based on one from ����� that com�
pares Jive�join �and Slam�join�� Valduriez
s algorithm� Hybrid�hash join and
Stripe�join� The join is a two�way one�to�one join between two relations of
size ��� �� �� million� tuples of width ��� bytes� All tuples participate in
the join� The performance of Stripe�join and Jive�join is very similar� The
cost of Jive�join includes the cost of sorting the join index �see Appendix A��
As can be seen from the graph� Jive�join and Stripe�join perform close to
the lower bound� and signi	cantly better than both Hybrid�hash join and
Valduriez
s algorithm� �

0

5000

10000

15000

20000

25000

0 500 1000 1500 2000 2500 3000

T
im

e
(s

ec
on

ds
)

memory size (megabytes)

Valduriez
Hybrid Hash

Jive/Slam
Stripe

Lower-bound

Figure �� Performance graph for Example ����

For a complete description of Jive�join� and a thorough performance
comparison of Jive�join with other algorithms see ����� In no scenarios that
we have studied have we found examples where Jive�join signi	cantly outper�
forms Stripe�join� In cases like Example ���� Stripe�join and Jive�join have
comparable performance characteristics� In those cases the comparisons of
Jive�join with other techniques apply equally well to Stripe�join� but we do

��

not repeat all of the comparisons from ���� here� Instead� we focus on the
cases where Stripe�join can signi	cantly improve upon Jive�join� Jive�join
and Slam�join are dual algorithms with very similar characteristics� Thus�
our comparison of Stripe�join with Jive�join below also holds for Slam�join�

��� A Comparison

When there is su�cient main memory the contribution of seek time and
rotational latency is small� In that context� we compare the NX values
for Stripe�join and Jive�join�� The saving of Stripe�join over Jive�join is

N
Stripe�join
X �N

Jive�join
X which is equal to

jJ j�� � ��r � �dlogmdjJ j�mee � �d�log� y���e�t�

If we make the reasonable assumptions that m � jJ j � m� and that
d�log� y���e � t� then the saving is equal to �� � ��r�jJ j� In other words�
Stripe�join does better �between one and two passes
 worth of the join
index� than Jive�join when there is both plenty of memory and an unsorted
join index� If jJ j � m� so that the join index 	ts in memory� then the
di�erence becomes ����r�jJ j meaning that Jive�join is slightly better than
Stripe�join �up to one passes
 worth of the join index�� To illustrate that
the improvement of Stripe�join over Jive�join may be signi	cant� consider
the following example�

Example ���� Suppose we 	x the size of two input relations and vary
the number of tuples in the join result� More speci	cally� let R� and R�

both have width ��� bytes� and both have ��� �about �� million� tuples�
Suppose that main memory is �� megabytes� We shall vary the cardinality
of the join from �� million to about ��� million� assuming that all tuples
from both relations participate in the join� The performance of Jive�join�

0

20000

40000

60000

80000

100000

120000

0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08

T
im

e
(s

ec
on

ds
)

tuples in J

Jive
Stripe

Self-Stripe
Hybrid Hash
Output cost

Figure �� Performance graph for Example ����

�The analytic cost formulas for Jive�join are reproduced in Appendix A�

��

Stripe�join� the self�join version of Stripe�join� and Hybrid�hash join are
given in Figure �� Also given is the output block�transfer cost� At the
leftmost end of the scale Jive�join just beats Stripe�join� However� as the
size of the join increases� Stripe�join dominates Jive�join by a substantial
margin� For example� at ��� million join tuples Stripe�join takes time �����
seconds� compared with ����� for Jive�join �and Hybrid�hash join�� That is
a ��� saving in total cost when one includes the output cost� If this join
happened to be a self�join� one can do even better� �

The other signi	cant improvement of Stripe�join over Jive�join is apparent
when one is performing a self�join�

Example ���� Suppose that we have a single relation of width ��� bytes
containing ��� tuples� We perform a join of that relation with itself� in which
the join has size ��� tuples and there is full participation of the relation
in both arguments of the join� The performance of Jive�join� the self�join
version of Stripe�join� and Self�hash join is given in Figure ��a�� When

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

memory size (megabytes)

2 way Jive
2 way Self-Stripe
2 way Self-Hash

�a�

0

5000

10000

15000

20000

0 200 400 600 800 1000 1200

T
im

e
(s

ec
on

ds
)

memory size (megabytes)

3 way Jive
4 way Jive

3 way Self-Stripe
4 way Self-Stripe

�b�

Figure �� Performance graphs for Example ����

one takes into account the output cost of about ���� seconds� the self�join

��

version of Stripe�join improves on Jive�join by ��� in total time� By having
to make only one pass through the participating relation Stripe�join can save
over Jive�join� Because the intermediate hash 	les are relatively large for
the Self�hash join� the overall cost is still high even though only one pass is
made through the input relation�
We also perform a three�way and a four�way self�join of the relation� with

similar join cardinality and tuple participation� The performance results
appear in Figure ��b�� The di�erences become more dramatic as Jive�join
needs to make three �respectively four� passes through the input relation
rather than one� �

Improvements similar to those of Example ��� appear not just for self�joins�
but also whenever a relation is repeated in a multi�way join�
Note that the optimization for self�joins does not apply to Jive�join be�

cause the two input relations to Jive�join are processed in separate phases of
the Jive�join algorithm� Because Stripe�join treats all of its input relations
symmetrically� we can
piggy�back� the work of later passes over one relation
onto the 	rst pass of that relation�
To be fair� the two�phase nature of Jive�join does allow a selection con�

dition on a nonindexed attribute of the 	rst relation to be combined within
the join itself� such a combination is not straightforward with Stripe�join�
Finally� to understand the tradeo�s of using a join index� we examine the

di�erent algorithms
 costs when the size of the join index is comparable to
those of the input relations�

Example ���� Suppose the two input relations as well as the join result
all have ��� �about �� million� tuples� Suppose that main memory is ��
megabytes and all tuples participate in the join� Given that the size of a
join index record is � bytes� we shall simultaneously vary the tuple size of
the input relations from � bytes to �� bytes� The performance of Valduriez
s

0

500

1000

1500

2000

2500

3000

3500

0 8 16 24 32 40

T
im

e
(s

ec
on

ds
)

input tuple size (bytes)

Valduriez
Hybrid Hash

Jive
Stripe

Figure �� Performance graph for Example ����

algorithm� Hybrid�hash join� Jive�join� and Stripe�join are given in Fig�
ure �� Like in Example ���� Valduriez
s algorithm performs the worst of all�

��

Stripe�join delivers slightly better performance than Jive�join throughout
the test range as the former can dispense with the extra sorting step of the
join index� Hybrid�hash join beats Jive�join when the input tuple size is
less than �� bytes� but beats Stripe�join only when the input tuple size is �
bytes� As the size of the input tuples increases� the superiority of Jive�join
and Stripe�join becomes evident� �

� Extensions

Stripe�join can use multi�level recursion ��� when the inputs are larger than
the memory bound �Equation ��� We need to perform additional levels
of partitioning� and to make an intermediate partitioning pass over �some
of� the input tuples� Thus� the cost of the algorithm will be higher� The
details of this extension will be presented in the full version of this paper� In
practice one would apply multi�level partitioning before hitting the memory
bound of Equation � in order to reduce the number of seeks for small I�O
units�
Stripe�join is particularly well�suited to joining inputs that are stored on

tape� The input relations and the join index are accessed purely sequentially�
Assuming that su�cient disk space was available for the temporary 	les and
the output result� Stripe�join would be a good choice for performing the join
with a pre�existing join index� Our cost model would have to be modi	ed
to model the characteristics of a tape drive�
There is a lot of potential parallelism in Stripe�join� Each of the input

relations �and each of the segments within each relation� can� in principle�
be processed independently� Compared with Jive�join� the parallelism in
Stripe�join is more transparent since all relations are treated symmetrically�
In Jive�join there are two distinct phases� one relation must be completely
processed before the other relations can be processed�

� Conclusions

We have proposed a new algorithm� Stripe�join� for performing a join using
a join index�� Like its predecessor Jive�join from ����� Stripe�join has the
following properties� Almost all of the I�O performed is sequential� A block
of an input relation is read if and only if it contains a record that participates
in the join� Skew does not adversely a�ect the performance� One can
join multiple relations� retaining the single�pass property of the inputs� by
using multidimensional data structures� For a wide variety of examples�
the algorithm outperforms conventional algorithms including Valduriez
s
algorithm and Hybrid�hash join�
Stripe�join has important advantages over Jive�join�

� Jive�join requires a 	xed ordering of the join index� while Stripe�join
does not� Thus� Stripe�join can avoid a sorting step�

�We were informed by one of the referees that similar partitioning ideas have been used
in the computation of Boolean functions by computing schemata �
���

��

� For joins in which a relation R appears more than once� Stripe�join
can make a single pass through R to cover all of the instances of R in
the join� In particular� self�joins can be performed with just one pass
through the self�joined relation�

� Stripe�join delivers better performance under some circumstances� in
particular when the cardinality of the join index is high�

To our knowledge Stripe�join is the 	rst algorithm that� given a join index
and a relation signi	cantly larger than main memory� can perform a self�
join with just a single pass over the input relation and without storing input
tuples in intermediate 	les�

References

�� D� S� Batory� On searching transposed �les� ACM Transactions on Database
Systems� ������������� �
�
�

�� J� Blakeley and Nancy Martin� Join index� materialized view� and hybrid�hash
join� a performance analysis� In Proc� IEEE Int�l Conf� on Data Eng�� pages
�������� �

��

�� M� Blasgen and K� Eswaran� Storage and access in relational data bases� IBM
Systems Journal� ������ �
���

�� B� Bratbergsengen� Hashing methods and relational algebra operations� In
Proceedings of the VLDB Conference� pages �������� August �
	��

�� K� Brown et al� Resource allocation and scheduling for mixed database
workloads� Technical Report ��
�� University of Wisconsin� Madison� �

��

�� D� J� DeWitt et al� Implementation techniques for main memory database
systems� In Proceedings of the ACM SIGMOD Conference� pages ��	� June
�
	��

�� G� Graefe� Performance enhancements for hybrid hash join� Technical Report
���� University of Colorado� Boulder� �

��

	� L� M� Haas� M� J� Carey� and M� Livny� Seeking the truth about ad hoc join
costs� Technical Report RJ
��	� IBM Almaden Research Center� �

��

� W� Kim� A new way to compute the product and join of relations� In
Proceedings of the ACM SIGMOD Conference� pages ��
��	�� May �
	��

��� M� Kitsuregawa et al� Application of hash to data base machine and its
architecture� New Generation Computing� �������� �
	��

��� Donald Ervin Knuth� Sorting and Searching� volume � of The Art of Computer
Programming� Addison�Wesley� Reading� Massachusetts� USA� �
���

��� Z� Li and K� Ross� Fast joins using join indices� Technical Report CUCS�����

�� Columbia University� �

��

��� P� Mishra and M� Eich� Join processing in relational databases� ACM
Computing Surveys� ������ March �

��

��� C� Mohan� D� Haderie� Y� Wang� and J� Cheng� Single table access using
multiple indexes� optimization� execution and concurrency control techniques�
In Proc� International Conference on Extending Data Base Technology� �

��

��

��� P� O�Neill and G� Graefe� Multi�table joins through bitmapped join indices�
SIGMOD Record� ������ �

��

��� L� Shapiro� Join processing in database systems with large main memories�
ACM Transactions on Database Systems� ������ �
	��

��� P� Valduriez� Join indices� ACM Transactions on Database Systems� ��������	�
���� �
	��

�	� Ingo Wegener� The Complexity of Boolean Functions� Teubener�Wiley�
Stuttgart� �
	��

�
� S� B� Yao� Approximating block accesses in database organizations� Commu�
nications of the ACM� �������������� �
���

A The Cost of Jive�join

For completeness� we present the Jive�join costs formulas from ����� Let
z� denote �r � ��jJ j�r� The corresponding formulas for the performance of
Jive�join given in ���� are�

NS � �
D �jJ j� jR�j� � � �� jRrj� jJ j�r�
��r � ��y� � z��v � n��x�

NI�O � Y ���jjR�jj� jR�j��� jjR�jj� � � � ��
Y ��rjjRrjj� jRrj��� jjRr jj� � z��v� � n��x
���r � ��y� � jJ j�� � �

NX � jJ j� �z� � �Y ���jjR�jj� jR�j��� jjR�jj�
� � � �� �Y ��ijjRijj� jRij��� jjRijj��

n� denotes jjJ jj� � R� � �b and the optimal values of x� y� and v� turn out
to be

�x� v�� y�� �

�
mr

L����r��	
p
z�n�	

� mr

L��r��	�
p
n��z	

� L
mr��

�

where L � �jJ j�r � ��jR�j� � � � �jJ j�r � �rjRrj��

Sorting the Join Index

When the join index is not clustered on one of its TID 	elds� we will have to
sort the join index before Jive�join� Slam�join or Valduriez
s algorithm can
apply� We analyze the I�O cost for sorting a join index J � Since the I�O is
mostly sequential� we shall ignore the seek and rotational latencies and just
count the number of block transfers�
The sorting algorithm we use is a merge sort� We generate runs of length

equal to the size of main memory� then merge those runs� �It is actually
possible to generate runs that are twice as long as main memory ����� but
the di�erence is immaterial in the present context�� The number of runs
that are written to disk is djJ j�me� On a single merge pass we can collapse
n runs into dn�me runs� The total number of block transfers during sorting

�There is a small change in the value of NS from �
��� Our estimate of NS is slightly
more accurate because it allows for only one dimension whose partition order corresponds
to the join result order�

��

is then ��� � dlogmdjJ j�mee�jJ j� �We can actually save up to �m blocks by
keeping the last run in memory� but the di�erence is not signi	cant here��
This number needs to be added to the NX value for any algorithm that
requires a sorted join index�

��

