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Abstract

We propose a new algorithm, called Stripe-join, for performing
a join given a join inder. Stripe-join is inspired by an algorithm
called “Jive-join” developed by Li and Ross. Stripe-join makes a single
sequential pass through each input relation, in addition to one pass
through the join index and two passes through a set of temporary files
that contain tuple identifiers but no input tuples. Stripe-join performs
this efficiently even when the input relations are much larger than main
memory, as long as the number of blocks in main memory is of the
order of the square root of the number of blocks in the participating
relations. Stripe-join is particularly efficient for self-joins. To our
knowledge, Stripe-join is the first algorithm that, given a join index and
a relation significantly larger than main memory, can perform a self-
join with just a single pass over the input relation and without storing
input tuples in intermediate files. Almost all the I/0 is sequential, thus
minimizing the impact of seek and rotational latency. The algorithm
is resistant to data skew. It can also join multiple relations while still
making only a single pass over each input relation. Using a detailed cost
model, Stripe-join is analyzed and compared with competing algorithms.
For large input relations, Stripe-join performs significantly better than
Valduriez’s algorithm and hash join algorithms. We demonstrate cir-
cumstances under which Stripe-join performs significantly better than
Jive-join. Unlike Jive-join, Stripe-join makes no assumptions about
the order of the join index.
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Systems - query processing
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1 Introduction

Decision support systems promise significant added value to an organi-
zation’s information resources. The basic challenge today is to develop
efficient query processing techniques that can turn this promise into reality
for a wide variety of potential users. The join operation of the relational
database model is the fundamental operation that allows information from
different relations to be combined. Joins are typically expensive operations,
particularly when the relations involved are substantially larger than main
memory. Therefore, it is critical to implement joins in the most efficient way
possible. A number of techniques have been developed to perform “ad-hoc”
joins, i.e., joins performed without the benefit of additional data structures
such as indices [3, 4, 6, 9, 13, 16].

In this paper, we consider joins of relations for which there exists a pre-
computed access structure, namely a join index [17]. A join index between
two relations maintains pairs of identifiers of tuples that would match in case
of a join. The join index may be maintained by the database system, and
updated when tuples are inserted and deleted in the underlying relations.
In situations where joins are taken often, the cost of doing this maintenance
can be more than offset by the savings achieved in performing the join. A
number of commercial decision support systems are rumored to be using
join indexes [15].

In [17], Valduriez proposed and analyzed a join algorithm that uses the
join index. The most important conclusion of that study was that, under
many circumstances, having the join index allows one to compute the join
significantly faster than the “best” ad-hoc methods such as Hybrid hash-
join [6]. However, it was shown in [12] that Valduriez’s algorithm utilizes a
significant amount of repetitious I/O. Blocks are accessed often for only a
small fraction of their tuples. The same block may be read multiple times
on different passes within the algorithm.

In [12], Li and Ross proposed two algorithms that significantly improve
upon Valduriez’s algorithm. The algorithms are called “Jive-join” and “Slam-
join.” The two algorithms are duals of one another, and have very similar
performance. Jive-join range-partitions the tuple-ids of the second input
relation, then processes each partition separately. Slam-join forms sorted
runs of tuple-ids from the second input relation, then merges those runs.

The crucial virtue of both algorithms is that they make just a single
read pass through each input relation under lenient memory requirements.
Unlike hash-join algorithms, input tuples are not stored in intermediate
files; intermediate files contain just short tuple identifiers. Other important
features of those algorithms include: (a) Almost all of the I/O performed is
sequential. (b) A block of an input relation is read if and only if it contains
a record that participates in the join. (c) Skew does not adversely affect the
performance. (d) One can join multiple relations, retaining the single-pass
property of the inputs, by using multidimensional data structures.

In this paper, we propose a new algorithm that is similar to the Jive-join



algorithm of [12]. Our new algorithm, which we term “Stripe-join,”! has
several important advantages over Jive-join:

e Jive-join requires a fixed ordering of the join index. If the join index
is not stored in such an order, one would have to first sort it before
applying Jive-join. There is no assumption made about the physical
order of the join index in Stripe-join. Thus, Stripe-join can avoid this
sorting step.

e Stripe-join is symmetric with respect to all relations. The join index
is first processed, then all participating relations are processed in a
symmetric fashion. Jive-join, on the other hand, treats one relation in
particular as “special” by reading it at the same time as the join index.
The symmetry of Stripe-join has an important performance benefit:
For joins in which a relation R appears more than once, Stripe-join
can make a single pass through R to cover all of the instances of R in
the join. In particular, self-joins can be performed with just one pass
through the self-joined relation. We believe that the symmetry prop-
erty also renders Stripe-join easily extensible to parallel architectures.

e Stripe-join delivers better performance under some circumstances, in
particular when the cardinality of the join index is high.

Like Jive-join, Stripe-join uses a vertically partitioned data structure for
the join result. (We do not assume that the inputs are vertically partitioned.)
Attributes from the first input relation are stored in a separate file from those
of the second input relation, using transposed files [1]. Attributes that are
common are placed arbitrarily in one of the two vertical fragments. There is
a one-to-one correspondence between records in each vertical partition: The
nth record in the first vertical fragment matches the nth record in the second.
Such a representation has a negligible performance impact on processes that
read the join result [12]. It is our understanding that vertical partitioning is
being deployed in some current proprietary commercial database systems,
including Sybase IQ and Red Brick.

Our main contributions include:

e The proposal of a novel algorithm for joining relations using a join
index. To our knowledge this is the first algorithm that, given a
join index and a relation significantly larger than main memory, can
perform a self-join with just a single pass over the input relation and
without storing input tuples in intermediate files.

e The analytic performance analysis of the algorithm using a detailed
cost model, demonstrating efficient single-pass performance under le-
nient memory requirements.

L«Stripe” is both an acronym (Symmetric Treatment of Relations that have a join
Index and that are Particularly Extensive) and a phrase intended to allude to the vertically
partitioned nature of the join result.



e Analytic comparisons of our algorithms with other algorithms, demon-
strating significant performance improvements under several condi-
tions.

The structure of the paper is as follows. In Section 2 we discuss our
assumptions and present the vertically partitioned data structure for the
join result. In Section 3 we present our Stripe-join algorithm, which is
then analyzed in Section 4. Section 5 compares our algorithms with other
algorithms. Section 6 discusses various extensions of our algorithms. We
conclude in Section 7.

2 Background

We consider an r-way join of r relations. (A conventional join has r =
2; while the most common type of join is probably a two-way join, the
description of our algorithms is only slightly more complex in the r-way
case, and so we simply present the r-way join algorithm directly.) The input
relations to be joined are denoted by Ry,...,R,. We assume for simplicity
that a tuple-id for each input relation is simply the “position” of the tuple
within the relation (eg., 1, 2, ...). However, our algorithm applies for any
sequential physical addressing scheme for which input relation records in
one block have smaller tuple-id values than the records in the next block.
Tuple-ids are used in the join index and in the intermediate results of our
join algorithm.

A join index is the set of tuples (¢, ..., t,) of tuple-ids such that the tuple-
ids t; from R; refer to tuples that match according to the join condition. We
shall treat the join index as a relation, and denote it by J. We do not assume
that the join index is physically ordered by any attribute.

For simplicity, we shall assume that all of the attributes of each R; are
required in the join result. The extension of our analysis to cases where
fewer attributes are required is straightforward.

We do not assume that any indexes are available on the input relations.
We also do not assume that either input relation is physically ordered by
any attribute.

Following [8], we assume that separate disks are used to store (a) join
indices, (b) temporary files, (c¢) input relations, and (d) the output result.
By using separate disks we avoid unnecessary disk seeks between accesses.
The input relations may reside on the same disk as each other.? Similarly,
we can store all temporary files on one disk. (This kind of configuration is
recommended by most commercial vendors.)

2 Actually, for the Stripe-join algorithm one can store the join index on the same disk
as the input relations with no loss of performance.



2.1 A Vertically Partitioned Data Structure for the Join
Result

We use a vertically partitioned data structure known as a transposed file
[1] to store the join result. Attributes from each R; that are present in the
join result are stored in a separate file (denoted JR;). Join attributes that
are common to more than one relation are placed arbitrarily in one of the
vertical fragments. The first entry in each of the files corresponds to the
first join result tuple, the second entry to the second join result tuple, and
so on. There is no need for any additional stored tuple-id or surrogate key.
Each vertical fragment is in the same sequence. This layout is summarized
in Figure 1 for r = 2. The join result JR is shown on the left in a traditional

Traditional Layout
JR(Num,Name,Date, Time)

1234 John Smith 12/31/64 21:54

3456 Fred Jones 10/02/66 12:01 Bl oc k 1
9876 David Brown 01/20/71 05:15

1364 John Adams  11/30/64 07:17
7356 Mary Jones  10/22/56 01.01 Bl oc k 2
9898 Alice Rogers  07/20/81 11:11

6566 Mark Black ~ 12/11/54 03:33
6566 Mark Black ~ 04/02/62 23:32 Bl oc k 3
1111 Pat Davis 11/19/70 15:55

New Layout
JR1(Num,Name) JR2(Date,Time)
1234 John Smith 12/31/64 21:54
3456 Fred Jones 10/02/66 12:01
9876 David Brown 01/20/71 05:15
1364 John Adams 11/30/64 07:17
7356 Mary Jones 10/22/56 01:01
9898 Alice Rogers 07/20/81 11:11
6566 Mark Black 12/11/54 03:33
6566 Mark Black 04/02/62 23:32
1111 Pat Davis 11/19/70 15:55

Figure 1: Physical Data Layout for the Join Result.

layout, and on the right in a partitioned layout as JR; and JR>. The input



relation R; has attributes Num and Name, and Ry has attributes Num, Date
and Time.

The advantage of the partitioned representation is that we will be able
to write each vertical partition in a separate phase of the algorithm, getting
better utilization of main memory.

3 Stripe-join

In this section we present a new algorithm called Stripe-join for performing
joins using a join index. The algorithm range-partitions the join index into
a number of temporary files. The input relations are then processed with
their corresponding temporary files to generate the vertical partitions of the
join result.

Algorithm 3.1: (Stripe-join) The algorithm consists of three steps:

Step 1

For ¢+ = 1,...,r we choose k; — 1 tuple-ids as partitioning elements for
R;. The aim is to evenly partition the tuples participating in the join.
We defer the discussion on how the partitioning values are chosen until
Section 4.3. Thus there are y = k1ko - - - k, partitions altogether; we number
them 1,...,y in lexicographic order. We refer to the collection of y/k;
partitions corresponding to a single partitioning range over R; an i-segment.

For each ¢ = 1,...,r we allocate in memory k; temporary file buffers
zZh ... Zfi each of length v blocks.

Step 2

We scan J sequentially. For each join-index tuple (¢1, ..., t,) we first identify
the partition to which this tuple belongs, based on the Rj,..., R, tuple-
ids. Suppose it is partition number [ (between 1 and y). We also identify
the segment to which this tuple belongs within each relation R;. Thus
we have for each i = 1,...,r an i-segment number g; (between 1 and k;)
corresponding to the position of ¢; among the partitioning elements for R;.

For each ¢ = 1,...,r we write the pair (¢;,1) to ZJ'. If the buffer Z}" is
filled, then it is flushed to disk, after which it can accept new values. When
all tuples have been processed in this way, all buffers are flushed to disk,
and the memory for the buffers is deallocated.

After finishing Step 2, we have generated ki + - - + k, temporary files
which we use in Step 3 below.

Step 3

We perform the following steps for each i in {1,...,r}.
For each of the k; temporary files (each corresponding to an i-segment)
we perform the following operations. We read into memory the whole



temporary file, processing each (¢;,/) pair by appending the ¢; value to a
list corresponding to the [ value. We call these lists the grouped lists.

Additionally, we compose a second array consisting of all the ¢; values
from the temporary file, sorted in tuple-id order with duplicates removed.
We then retrieve tuples from R; in order, retrieving only blocks that contain
a matching record according to our sorted array of tuple-ids. We stop when
we reach the end of the array.

We are now ready to write the segment’s portion of JR;. There are y/k;
partitions in the segment, corresponding to the different values of [ in the
(t;,1) pairs. We write the full R; tuples for each partition to a separate file,
in the order of the corresponding grouped list above. (We could use binary
search to locate the R; tuples in order, or alternatively store the R; tuples
in a hash table by hashing on the tuple-id.)

By the time we have finished with the final i-segment, we have generated
all of JR;. The partitions of JR; can be linked together?® into a single file.
Once we have performed Step 3 for all values of 7 we have the required join
result. O

We illustrate the use of Stripe-join using an example based on [12], but
without an ordered join index.

Example 3.1: Consider the two relations Student and Course, and their
join result, given below. This particular join is a natural join in which we
match the course numbers in the two input tables. To enable the reader to
keep track of various duplicate student tuples as they are processed through
the algorithm, we have provided superscripts to help distinguish them.

Student | Course Course | Instructor
Smith! | 101 101 Green
Smith? | 109 102 Yellow
Jones 104 103 Green
Davis' | 102 104 White
Davis? | 105 105 Evans
Davis® | 106 106 Alberts
Brown | 102 106 Beige
Black 103 108 Red
Frick 107 109 Grey
Relation Student Relation Course

3We can physically place the partitions of JR; contiguously on disk if we keep track in
Step 2 of the number of tuples in each partition. In this case the linking step is trivial.
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Student | Course | Instructor C-id
Brown 102 Yellow
Smith! | 101 Green
Jones 104 White
Smith? | 109 Grey
Davis® 106 Alberts
Davis! | 102 Yellow
Davis® | 106 Beige
Black 103 Green
Davis? 105 Evans

CO O OO DN WK
W I DN OO =N

ot
ot

Join Result Join Index

For the purposes of exposition, we assume that each input record occupies
one disk block. We also assume that we have three partitions for each
relation (k1 = ko = 3, y = 9) and that each buffer can hold just one input
record at a time. We choose partitioning values 4 and 6 for the tuple-ids
of the matching Student tuples, and values 3 and 6 for the tuple-ids of the
matching Course tuples. The partition numbering is summarized in the
following diagram:

Student Course tuple-id

tuple-id (1) id< 3 | (2) 3<id< 6 | (3) 6 <id
(1) id< 4 1 4 7

(2) 4 <id< 6 2 5 8

(3) 6 <id 3 6 9

After the first step, we have allocated six buffers, three for each of Student
and Course. After the second step, we have partitioned the join index (and
added partition numbers) as follows:

Student Course
(1) (2) (3) (1) (2) (3)
(1,1) (4,2) (7,3) (2,3) (4,4) (9,7)
(3,4) (5,5) (6,9) (1,1) (3,6) (6,9)
(2,7) (6,9) (2,2) (5,5) (7,9)
(8,6

) )

In Step 3 of the algorithm, for each temporary file, we read in and divide
the temporary file sequences into the grouped lists according to the partition
number (the second element of the pair). We also generate a sorted list of
tuple-ids appearing in the file. The corresponding tuples are then read from
the input relation and written to fragments of the join result, one fragment
for each partition. This process is summarized in Figure 2.

The left column in Figure 2 contains the grouped list for each partition
number. The middle column contains the tuple-ids in sorted order (without
duplicates), and the right column contains the matching records from the
input relation that are read in. The records are written to the output in the
order of the grouped lists. Since we generate one partition at a time, we need




Student

(1) id< 4 (2) 4 <id< 6 (3) 6 <id
1—-1 1 Smith! 2 =4 4 Davis! 37 6 Davis®
43 2 Smith? 5—5 5 Davis? 6 — 8 7 Brown
7T—2 3 Jones 8 = nil 9 — 6,6 8 Black
4 4 4
1 ‘ Smith! ‘ 2 ‘ Davis! ‘ 3 | Brown |
4 |Jones | 5 |Davis? | 6 |Black |
7 | Smith? | 9 |Davis®
Davis®
Course
(1) id< 3 (2) 3<id< 6 (3) 6 <id
11 1 101 Green 44 [ 3] [103 Green 79 6 | | 106 Alberts
22| | 2| |102Yellow | |5—5| | 4| | 104 White | | 8 = nil | | 7| | 106 Beige
3 =2 6—3 5 105 Evans 9 — 6,7 9 109 Grey
¥ ¥ 4
1 |101 Green | 4 104 White | 7 109 Grey |
2 [102 Yellow | 5 [105 Evans |
3 [102 Yellow | 6 [103 Green | 9 |106 Alberts

106 Beige

Figure 2: Step 3 of Stripe-join for Example 3.1.

only one output buffer in memory to generate the partitions. Concatenating
the various partitions of the generated join result in order of the partition
numbers, our output looks like this:

Student Course Instructor
Smith! 101 Green
Davis ! 102 Yellow
Brown 102 Yellow
Jones 104 White
Davis? 105 Evans
Black 103 Green
Smith? 109 Grey
Davis® 106 Alberts
Davis? 106 Beige

The output is in two vertical fragments JR; and JRy. The horizontal lines
denote the boundaries between the partitions. The result is the same as
that given initially, except for the order of the tuples. O




An important aspect of Stripe-join is that tuples from the various relations
“line up” within each partition. The design of the algorithm ensures that
within a partition the tuples are in the same order as they were in the initial
join index, ensuring that the tuples do in fact line up.

Stripe-join shares a number of important characteristics with Jive-join,
as illustrated by Example 3.1: (a) The algorithm reads only participating
records. Records for student Frick and instructor Red are not read from
disk, saving I/O. (b) Participating records are read just once, even when they
participate multiple times. (c) By using buffering, the algorithm can operate
while keeping at most three full records (from either relation) in memory
at any one time, together with some tuple-ids and partition numbers. Both
input relations are larger than three records. (d) Only one pass over each
input relation is made. In contrast, with main memory capable of holding
just three records (plus some tuple-ids), Valduriez’s algorithm would make
three passes through the Course relation. We shall discuss the improvements
that Stripe-join makes over Jive-join in Section 5.

3.1 An Enhancement

Notice that in Example 3.1 the output result partitions for the Course
relation are actually generated in the same order that they appear in the
join result. One could combine the partitions into a single large unit within
Step 3 of the algorithm, thus generating

101 Green
102 Yellow
102 Yellow
104 White
105 Evans
103 Green
109 Grey
106 Alberts
106 Beige

in one unit rather than in eight partitions. As we shall see, reducing
the number of separate output partitions will improve the performance by
requiring fewer disk seeks.

We can apply this enhancement fully to just one of the participating
relations, because the order of the partition numbers can agree with at most
one of the input relations’ segment orders. However, it is possible to apply
it partially to other relations.

For example, consider a three-way join in which each relation is parti-
tioned in two (k1 = ko = k3 = 2). Thus there are eight partitions in total,
numbered 1 to 8. For Ry, we may process the partitions as {1,2,3,4} in the
first 1-segment, followed by {5,6,7,8} in the second 1-segment. Thus we
can fully utilize the enhancement for this relation. For Ry, we may process
the partitions as {1,2,5,6} in the first 2-segment, followed by {3,4,7,8} in
the second 2-segment. We can reduce the effective number of partitions by

10



half by writing partitions 1 and 2 to the same output unit. Similarly, we
can write partitions 5 and 6, partitions 3 and 4, and partitions 7 and 8 each
together. (It does not significantly help to write 3 and 4 to the same unit
of output that 1 and 2 were previously written to because intervening seeks
are still necessary.) For R3 we would process {1,3,5,7} and {2,4,6,8} in
the two segments, with no opportunities for applying the enhancement.
Let us suppose that the R, partition order is the highest-order component
of the partition order. Then R; can reduce the number of partitions to 1;
for i =2,...,r, R; can reduce the number of partitions to ki --- k; from y.

3.2 Self-Joins

There is an important specialization of the Stripe-join algorithm for the case
where a relation is joined with itself. For an example of a self-join, consider
a relation

Employee (ssn,name,salary,manager-ssn)

and suppose we wish to compare the salaries of employees with the salaries
of their managers. In order to do so we join Employee with itself, equating
ssn in one copy with manager-ssn in the second.

Suppose we had a join index for this join, i.e., a set of pairs of tuple-ids
of employees’ records with tuple-ids of their managers’ records. Then we
could apply Stripe-join as described above. However, that would result in
two passes over the Employee relation. We can do better by coalescing the
two passes over the Employee relation in Step 3 of the algorithm into one
pass during which time we do the work for both of the copies of Employee in
the join. This optimization can be used whenever a relation appears more
than once in the join.

Algorithm 3.2: (Stripe-join with Repeated Relations)

The algorithm is identical to Algorithm 3.1 except as noted below.

In Step 1 we require any relation that appears more than once in the join
to be partitioned in the same way each time it is mentioned. Thus the k;
and k; values (and the corresponding partitioning elements) are the same if
R; and R; are actually the same relation.

We modify Step 3 as follows. Suppose that R;,,..., R;, is the (maximal)
set of instances of the same relation R in the join, with n > 1. Let k =
ki, =---=k;, . For j =1,...,k we proceed as follows:

We read into memory the jth temporary file from all of R;,,..., R;,.
Thus we have n temporary files, one per relation instance, in memory
simultaneously. Each of the temporary files is separately grouped into
lists as before. However, we produce only one combined duplicate-free
list of tuple-ids for tuples of R that participate in the join. Those tuples
of R mentioned in the list are read sequentially into memory. The
remainder of this step is as before: we output the various partitions
for each of R; ,..., R;, while we have the R tuples in memory.

11



If more than one relation appears multiple times, then we modify the
algorithm as above for each repeated relation. O

4 Performance Analysis

4.1 A Detailed Join Cost-Model

A table of symbols is given in Table 1. A table of system constants, with
their value (used in the analytic comparisons) is given in Table 2. The
constants used follow [8, 5, 12], and correspond to the Fujitsu M2266 disk
drive.

Symbol Meaning

|R| Number of blocks in R.

|| R]| Number of tuples in R.

<K R> Width in bytes of a tuple in R.

r Number of participating
relations.

t Size in bytes of a tuple-id, in-
memory pointer, or integer value.

T; Semijoin selectivity, i.e., the pro-

portion of the tuples in R; that
participate in the join.
Y (k,d,n) | Function to estimate the number
of block accesses needed to re-
trieve k tuples out of m tuples
stored in d blocks [19].

m Size of main memory, in disk
blocks.

15} Blocks in an input relation buffer.

Ng Seeks in an algorithm.

Nijo I/O requests in an algorithm.

Ny Block transfers in an algorithm.

Table 1: Table of symbols

Haas, Carey and Livny have proposed a detailed I/O cost model in which
seek time and rotational latency are explicit [8]. These authors reexamine
a number of ad-hoc join methods using their cost model, and demonstrate
that the ranking of join methods obtained by using a block-transfer-only
cost model for I/O may change when the same algorithms are analyzed using
their more detailed cost model. In this paper, we shall use the detailed cost
model from [8] to measure the cost of various join algorithms. The total I/O
cost of a join algorithm is measured as

NgTs + NyjoTr, + NxTx.

12



Symbol | Value | Meaning

b 8192 | Bytes in a disk block.

c 83 | Disk blocks in a cylinder.

D 130000 | Blocks in a disk device.

Ts 9.5 | Time for an average disk
seek (milliseconds).

Ty, 8.3 | Average rotational
latency (milliseconds).

Tx 2.6 | Block transfer time
(milliseconds).

Table 2: Table of system constants

In other words, the total I/O cost of an algorithm is the sum of three
component costs: seek cost, latency cost, and page transfer cost. Each
of these costs is in turn the product of the number of actions multiplied by
the average time that action consumes.

In this paper we ignore CPU cost, and focus on the I/O cost. The main
reasons for this choice are (a) that CPU cost is significantly smaller than the
I/O cost, and (b) almost all of the CPU-intensive work can be done while
waiting for disk I/O. Furthermore, I/O cost will be even more dominant
in the future, as processor and memory speeds are increasing five to ten
times faster than I/O device speed. Due to space constraints, we defer the
presentation of our CPU cost model to the full version of this paper. The
dominance of I/O cost over CPU cost for Jive-join has been demonstrated
experimentally in [12].

We perform input buffering on the input relations in order to reduce seek
and rotational latency. If the input buffer size is # blocks, then that is the
minimal unit of information transfer from the input relations: we must read
a [-block chunk if any of the constituent blocks contains a participating
tuple. In our analytic graphs we use a value of 3 equal to the cylinder size
c, i.e., 83 blocks.

Some of our disk output is not fully sequential. We shall allocate buffers
and optimize their size to get the best I/O cost.

In some stages of our algorithm, records are accessed in order from a
contiguously stored relation. We can approximate the total seek time for
one pass through relation R as 3|R|/D times the average seek cost, where
D is the capacity (in blocks) of the disk unit. We count three times* the
“average” seek cost, estimating that the average seek cost is equal to one
third of the time taken to move from one edge of the disk to the other. This
rough approximation assumes that seek time can be accumulated in a linear
fashion, and that there are no competing accesses to the disk device. If there

*One can show analytically that for linear seek times the time taken to traverse the
whole disk is, on average, three times the time taken to move from a random cylinder to
another random cylinder on the disk.

13



was contention on the disk device between cylinder accesses, then we would
have to count one seek per cylinder, since the seeks between cylinders would
not necessarily be small.

We assume that in-memory sorting is done in-place.

In this paper we do not address the cost of maintaining the join index.
Blakeley and Martin have comprehensively analyzed the tradeoff between
join index maintenance cost and the join speedup [2].

4.2 Memory Requirements

We need Step 1 and Step 2 to fit in main memory. Ignoring insignificant
terms, the following inequality must hold:

v(ky 4+ k) <m. (1)

Each iteration of Step 3 must also fit in main memory. We assume that
the tuples in the k; temporary files for relation R; are evenly distributed
(see Section 4.3). The sorted tuple-id list can be discarded incrementally
(and the memory reused) as the R; records are read. Thus, we get

|J|/’I"+Ti|Ri| < k;m (2)

assuming that all of the attributes of R; are required in the join. Combining
Equations 1 and 2 with the constraint that v > 1 yields

m > /|7 +ni|Ri| + - + 7| Ry . (3)

Equation 3 specifies the minimum amount of memory necessary for Jive-join
to perform with a single pass over the input relations. This is a very reason-
able condition, stating that the number of blocks in main memory should
be at least of the order of the square root of the number of participating
blocks in all relations, and the number of blocks in the join index.

To get an idea of how lenient this constraint is in practice, imagine we had
128 megabytes of main memory, that disk blocks were 8K bytes, and that we
had a one-to-one two-way join between Ry and Ry with full participation by
both relations. Assuming that tuples in the input relations are much wider
than a tuple-id, we would be able to apply Stripe-join with a single pass
through each input for inputs of total size up to 2 terabytes. (For larger
relations, Stripe-join still applies, but with higher cost; see Section 6.)

In Section 4.4 we will show how to choose optimal values of k; and v.

For Self-joins we keep more information in memory during Step 3. Let us
consider an r-way self join of a relation R. We can estimate the combined
semijoin selectivity over the r uses of Ras 7=1— (1 —7)---(1 —7,) by
assuming that the semijoin selectivities are independent. Let k = k; = --- =
k.. Equation 2 now becomes

|J| + 7|R| < km (4)
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since we keep 7 sets of tuple-ids in memory at once, rather than one.
Consequently, Equation 3 becomes

m > y/r|J| + 7|R]. (5)

Equation 5 is an improvement over Equation 3 (with right-hand-side \/|J| + (11 + -+ - + 7;.)| R|
for self-joins) when the |R| term dominates the |J| term.

4.3 Choosing the Partitioning Values

We now show how to choose the partitioning elements in Step 1 of Stripe-join.
A first attempt might be to partition the tuple-ids evenly. Since the number
of tuples in each R; is known, we could simply divide the tuple-id range into
k; equal-sized partitions.

This approach would work if the distribution of tuples in the join was
uniform. However, for distributions with significant skew, we may find that
some partitions contain many more participating tuples than others. For all
partitions to fit in main memory, we would have to ensure that the largest
partition, together with its portion of the temporary file, fits in main memory
in Step 3. We thus waste some memory for all other partitions.

Fortunately, we can do better. In fact, we can perfectly partition the
tasks of Step 3 to just fit into memory if we are prepared to perform a
preprocessing step on the join index. The join index provides us with all the
information we need about skew. A preprocessing step like that of [12] can
examine the join index and calculate the partitioning elements that divide
the tasks of Step 3 into equal-sized chunks.

Another alternative is for the system to maintain a set of partitioning
values at the same time that it maintains the join index. In a low-update
environment such as a decision support system, such an approach would be
feasible.

4.4 Measuring the Cost

We now calculate the values of Ng, Ni/0, and Nx in order to measure the
cost of Stripe-join. We do not include the block transfer cost of writing the
output because it is the same for all algorithms. We let z denote the total
size of the temporary files: z = |J| + |J|[(logy y)/8]/t since we need log, y
bits to represent the range 1,...,y. We assume that the partitioning values
have already been chosen and do not need any significant I/O to read in.
Thus, there is no measured I/O in Step 1.

The number of seeks in Step 2 is 3|.J| /D for J, plus one seek for each buffer
flush. The number of buffer flushes is z/v. The number of seeks in Step 3
is 3(|R1| + -+ |Ry|)/D for Ry,..., R, (since each R; is read sequentially),
k1 + -+ + k, + 3z/D for reading the temporary files, plus one seek for each
time one starts a new partition in the output result. Using the enhancement
of Section 3.1, we count the accesses in one dimension (say R;) as sequential,
with total seek cost 3(||J||* < Ry >)/Db; in the other dimensions the total
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seek cost is (r — 2)y/k; +y. Thus, we obtain the formula

Ns = 3(J]+|Ri|+ -+ |R|
+| ||« < Ry > [b+ 2)
thy 4 A ke +2fo+ (r—2)y/k +y.

The number of I/O requests in Step 2 is |J|/3 for J and z/v for writ-
ing the temporary file buffers. The number of I/O requests in Step 3 is
Y (rillBa | [Ril /B 1 Ral[) + -+ + Y (1] [ Byl [, | By /B, |y ) for reading all of
the R; relations, plus k; + - -- + k, for reading the temporary files, plus ry
for writing the join result. Thus, we obtain the formula

Nyo = [JI/B+Y(nul||Ball, [Bal/5, || Ball) + -
+Y (e[ Be ], | B[/ 5 || Be])
+ki+ -+ ke 4+ z/v+ry.

The number of block transfers in Step 2 is |J| for reading J and z for
writing the temporary files. In Step 3 we read the temporary files, with cost
z. The cost for reading the input relations is BY (r1||R1||, |R1]/5, || R1]|) +
-+ BY (1||Ry||, |Rr|/ B, ||Rr||). Thus, we obtain the formula

Nx = [J|+2z+ BY (ri[|Rul], [Ral/ B || Ral]) + -
+OY (e[| Be ||, | By |/ B, || B ]])-

Now we are in a position to choose optimal values for kq,..., k. and v.
The algorithm cost is an increasing function of each k;, and a decreasing
function of v. Thus we wish to minimize each k; and maximize v.

Thus we can interpret Equation 2 as stating that

ki = (|J|/r + 7i|Ri]) /m.

Equation 1 then implies that

m2

71/ + mlBal) + -+ (TI/7 + 7| Be])

v =

In an analogous fashion we can determine the cost of r-way self-joins using
Stripe-join. We obtain

B = (J]+7R)/m
v = m?/r(|J] +7|R|)
Ns = 2 (J|+|Rl+||J]|* < R> /b+2)
+rk+z/v+ (r—2)y/k+y.
Nijo = JI/B+Y(7||RI|,|R]/B,]|R]])
+rk +z/v+ry.
Nx = |J[+2z+pY(7]|R||,|R|/B,||R])
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4.5 Selection Conditions

Stripe-join applies when one uses a subset of the join index rather than the
full join index. Thus one could apply selection conditions to the input rela-
tions’ indexes (which are much smaller than the input relations themselves),
combine the lists of resulting tuple-ids (using union for an “or” condition
and intersection for an “and” condition [14]), and use the result to semijoin
the join index [17]. Stripe-join can then be applied to the input relations
and the reduced join index. Similarly, if the join index also included the join
attribute value (for easy maintenance) then selections on the join attribute
could be made on the join index itself.

5 Comparing Stripe-join with Other Algorithms

In this section we compare Stripe-join with several other algorithms. We
present performance graphs for several example scenarios that illustrate the
analytically derived cost for each algorithm.

5.1 Hash Joins

There are several variants of hash joins in the literature. Two important
variants are Grace-hash join [10] and Hybrid-hash join [6]. In Grace-hash
join the input relations are hashed on the join attribute in such a way
that the disk-resident hash buckets of one relation fit in memory. In a
second phase the algorithm performs an in-memory join of the records in
the corresponding hash-buckets. Hybrid-hash join additionally keeps one
hash bucket of the first relation in memory. When the first relation is not
much larger than main memory the in-memory hash bucket significantly
reduces the amount of I/O. The I/O performance of Hybrid-hash join has
been studied in [6, 8, 12]; the graphs in this paper use the formulas from
[12].

One can formulate a version of Grace-hash join that applies specifically
to self-joins. During an initial pass of the relation to be joined, one can
simultaneously hash on both attributes that are matched for the join. Thus
one can save an entire pass through the input relation, although one still
has to write and read the two disk-resident hash tables. We refer to this
algorithm as a “Self-hash” join. Its performance characteristics can easily be
derived from those of Grace-hash join [10, 8]. The same technique may be
incorporated into Hybrid-hash join when performing self-joins, but we shall
not consider it further. For input relations significantly larger than main
memory, Hybrid-hash delivers essentially the same performance as Grace-
hash [8].

5.2 Valduriez’s Algorithm

Assuming the join index is clustered on one of the tuple-id fields (say, R1
tuple-id), Valduriez’s algorithm joins two input relations as follows [17].
As much of J and R; as will fit in memory is read in sequentially from
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secondary storage. Then the in-memory portion of the join index is sorted
by the tuple-id value from Ry and Rs is scanned sequentially for the tuples
that match the memory-resident J tuples. For each Ry tuple retrieved, the
corresponding R; tuple is located in memory, and the resulting join tuple
is written to the output file. The above process is repeated until J and R;
have been exhausted. This algorithm requires that Ry be scanned multiple
times when J and R; cannot fit in memory at once. See [12] for the exact
cost formula.

5.3 Jive-join

Jive-join improved on previous join techniques by allowing one to perform
the join using a single sequential scan of the input relations. Stripe-join was
inspired by Jive-join.

Example 5.1: Figure 3 shows a graph (based on one from [12]) that com-
pares Jive-join (and Slam-join), Valduriez’s algorithm, Hybrid-hash join and
Stripe-join. The join is a two-way one-to-one join between two relations of
size 22° (~ 34 million) tuples of width 256 bytes. All tuples participate in
the join. The performance of Stripe-join and Jive-join is very similar. The
cost of Jive-join includes the cost of sorting the join index (see Appendix A).
As can be seen from the graph, Jive-join and Stripe-join perform close to
the lower bound, and significantly better than both Hybrid-hash join and
Valduriez’s algorithm. O

25000

Valduriez —
Hybrid Hash ------
Jive/Slam -
Stripe

20000 Lower-bound ----

15000 | e —

Time (seconds)

=
o
s)
S
s]

5000 -

. . . . .
0 500 1000 1500 2000 2500 3000
memory size (megabytes)

Figure 3: Performance graph for Example 5.1.

For a complete description of Jive-join, and a thorough performance
comparison of Jive-join with other algorithms see [12]. In no scenarios that
we have studied have we found examples where Jive-join significantly outper-
forms Stripe-join. In cases like Example 5.1, Stripe-join and Jive-join have
comparable performance characteristics. In those cases the comparisons of
Jive-join with other techniques apply equally well to Stripe-join, but we do
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not repeat all of the comparisons from [12] here. Instead, we focus on the
cases where Stripe-join can significantly improve upon Jive-join. Jive-join
and Slam-join are dual algorithms with very similar characteristics. Thus,
our comparison of Stripe-join with Jive-join below also holds for Slam-join.

5.4 A Comparison

When there is sufficient main memory the contribution of seek time and
rotational latency is small. In that context, we compare the Nx values
for Stripe-join and Jiv.e—tjoin.5 The saving of Stripe-join over Jive-join is
N;?’tmpe—jom — Ngwe—jom which is equal to

[ J1(2 = 2/r + 2[log,, [ 7|/m]1 — 2[(loga y)/8]/1)

If we make the reasonable assumptions that m < |J| < m? and that
[(logyy)/8] = t, then the saving is equal to (2 — 2/r)|J|. In other words,
Stripe-join does better (between one and two passes’ worth of the join
index) than Jive-join when there is both plenty of memory and an unsorted
join index. If |J| < m, so that the join index fits in memory, then the
difference becomes (—2/r)|J| meaning that Jive-join is slightly better than
Stripe-join (up to one passes’ worth of the join index). To illustrate that
the improvement of Stripe-join over Jive-join may be significant, consider
the following example.

Example 5.2: Suppose we fix the size of two input relations and vary
the number of tuples in the join result. More specifically, let Ry and Ro
both have width 256 bytes, and both have 2?° (about 34 million) tuples.
Suppose that main memory is 32 megabytes. We shall vary the cardinality
of the join from 34 million to about 700 million, assuming that all tuples
from both relations participate in the join. The performance of Jive-join,

120000

100000 - Jive —
Stripe -
Self-Stripe -+
Hybrid Hash
80000 Output cost ----

seconds)

60000 -

Time

40000

20000 ~

0

. . . . . .
0 1e+08 2e+08 3e+08 4e+08 5e+08 6e+08 7e+08
tuples inJ

Figure 4: Performance graph for Example 5.2.

®The analytic cost formulas for Jive-join are reproduced in Appendix A.
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Stripe-join, the self-join version of Stripe-join, and Hybrid-hash join are
given in Figure 4. Also given is the output block-transfer cost. At the
leftmost end of the scale Jive-join just beats Stripe-join. However, as the
size of the join increases, Stripe-join dominates Jive-join by a substantial
margin. For example, at 200 million join tuples Stripe-join takes time 11000
seconds, compared with 19800 for Jive-join (and Hybrid-hash join). That is
a 17% saving in total cost when one includes the output cost. If this join
happened to be a self-join, one can do even better. O

The other significant improvement of Stripe-join over Jive-join is apparent
when one is performing a self-join.

Example 5.3: Suppose that we have a single relation of width 256 bytes
containing 22° tuples. We perform a join of that relation with itself, in which
the join has size 22° tuples and there is full participation of the relation
in both arguments of the join. The performance of Jive-join, the self-join
version of Stripe-join, and Self-hash join is given in Figure 5(a). When
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Figure 5: Performance graphs for Example 5.3.

one takes into account the output cost of about 5450 seconds, the self-join
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version of Stripe-join improves on Jive-join by 24% in total time. By having
to make only one pass through the participating relation Stripe-join can save
over Jive-join. Because the intermediate hash files are relatively large for
the Self-hash join, the overall cost is still high even though only one pass is
made through the input relation.

We also perform a three-way and a four-way self-join of the relation, with
similar join cardinality and tuple participation. The performance results
appear in Figure 5(b). The differences become more dramatic as Jive-join
needs to make three (respectively four) passes through the input relation
rather than one. O

Improvements similar to those of Example 5.3 appear not just for self-joins,
but also whenever a relation is repeated in a multi-way join.

Note that the optimization for self-joins does not apply to Jive-join be-
cause the two input relations to Jive-join are processed in separate phases of
the Jive-join algorithm. Because Stripe-join treats all of its input relations
symmetrically, we can “piggy-back” the work of later passes over one relation
onto the first pass of that relation.

To be fair, the two-phase nature of Jive-join does allow a selection con-
dition on a nonindexed attribute of the first relation to be combined within
the join itself; such a combination is not straightforward with Stripe-join.

Finally, to understand the tradeoffs of using a join index, we examine the
different algorithms’ costs when the size of the join index is comparable to
those of the input relations.

Example 5.4: Suppose the two input relations as well as the join result
all have 2% (about 34 million) tuples. Suppose that main memory is 32
megabytes and all tuples participate in the join. Given that the size of a
join index record is 8 bytes, we shall simultaneously vary the tuple size of
the input relations from 4 bytes to 40 bytes. The performance of Valduriez’s
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Figure 6: Performance graph for Example 5.4.

algorithm, Hybrid-hash join, Jive-join, and Stripe-join are given in Fig-
ure 6. Like in Example 5.1, Valduriez’s algorithm performs the worst of all.
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Stripe-join delivers slightly better performance than Jive-join throughout
the test range as the former can dispense with the extra sorting step of the
join index. Hybrid-hash join beats Jive-join when the input tuple size is
less than 16 bytes, but beats Stripe-join only when the input tuple size is 4
bytes. As the size of the input tuples increases, the superiority of Jive-join
and Stripe-join becomes evident. O

6 Extensions

Stripe-join can use multi-level recursion [7] when the inputs are larger than
the memory bound (Equation 3). We need to perform additional levels
of partitioning, and to make an intermediate partitioning pass over (some
of) the input tuples. Thus, the cost of the algorithm will be higher. The
details of this extension will be presented in the full version of this paper. In
practice one would apply multi-level partitioning before hitting the memory
bound of Equation 3 in order to reduce the number of seeks for small I/O
units.

Stripe-join is particularly well-suited to joining inputs that are stored on
tape. The input relations and the join index are accessed purely sequentially.
Assuming that sufficient disk space was available for the temporary files and
the output result, Stripe-join would be a good choice for performing the join
with a pre-existing join index. Our cost model would have to be modified
to model the characteristics of a tape drive.

There is a lot of potential parallelism in Stripe-join. Each of the input
relations (and each of the segments within each relation) can, in principle,
be processed independently. Compared with Jive-join, the parallelism in
Stripe-join is more transparent since all relations are treated symmetrically.
In Jive-join there are two distinct phases: one relation must be completely
processed before the other relations can be processed.

7 Conclusions

We have proposed a new algorithm, Stripe-join, for performing a join using
a join index.% Like its predecessor Jive-join from [12], Stripe-join has the
following properties: Almost all of the I/O performed is sequential. A block
of an input relation is read if and only if it contains a record that participates
in the join. Skew does not adversely affect the performance. One can
join multiple relations, retaining the single-pass property of the inputs, by
using multidimensional data structures. For a wide variety of examples,
the algorithm outperforms conventional algorithms including Valduriez’s
algorithm and Hybrid-hash join.
Stripe-join has important advantages over Jive-join:

e Jive-join requires a fixed ordering of the join index, while Stripe-join
does not. Thus, Stripe-join can avoid a sorting step.

5We were informed by one of the referees that similar partitioning ideas have been used
in the computation of Boolean functions by computing schemata [18].
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e For joins in which a relation R appears more than once, Stripe-join
can make a single pass through R to cover all of the instances of R in
the join. In particular, self-joins can be performed with just one pass
through the self-joined relation.

e Stripe-join delivers better performance under some circumstances, in
particular when the cardinality of the join index is high.

To our knowledge Stripe-join is the first algorithm that, given a join index
and a relation significantly larger than main memory, can perform a self-
join with just a single pass over the input relation and without storing input
tuples in intermediate files.
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A The Cost of Jive-join

For completeness, we present the Jive-join costs formulas from [12]. Let
2" denote (r — 1)|J|/r. The corresponding formulas for the performance of
Jive-join given in [12] are’

Ns = $(J[+ R+ + B+ |J|/r)
+(r—=2)y +2'/v+ni/x.

Nyjo = Y(nl|Ril|, |B1l/B, [|Bal]) + -+
Y (7| |Be||, | R/ B, [| B |]) + 2" 0" +ma/x
+2(r = 1)y + |J|/B + .

Nx = [|J|+ 22"+ BY (mi||R1l, |R1|/B, || Rull)
+ o+ BY (il |[Ril|, | R/ B, || Ril])-

ny denotes ||J||* < Ry > /b and the optimal values of z, ' and v’ turn out
to be

T

I m m” L
(ZE,’U » Y ) — (L(1+(r1)\/z/n1)’ L((r71)+\/n1/z)’ mr—l)

where L = (|J|/r + 12| Ral) - -- (|J|/r + 77| Ry |).

Sorting the Join Index

When the join index is not clustered on one of its TID fields, we will have to
sort the join index before Jive-join, Slam-join or Valduriez’s algorithm can
apply. We analyze the I/O cost for sorting a join index .J. Since the I/O is
mostly sequential, we shall ignore the seek and rotational latencies and just
count the number of block transfers.

The sorting algorithm we use is a merge sort. We generate runs of length
equal to the size of main memory, then merge those runs. (It is actually
possible to generate runs that are twice as long as main memory [11], but
the difference is immaterial in the present context.) The number of runs
that are written to disk is [|J|/m]. On a single merge pass we can collapse
n runs into [n/m] runs. The total number of block transfers during sorting

"There is a small change in the value of Ns from [12]. Our estimate of N is slightly
more accurate because it allows for only one dimension whose partition order corresponds
to the join result order.
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is then 2(1 + [log,,[|J|/m]])|J|. (We can actually save up to 2m blocks by
keeping the last run in memory, but the difference is not significant here.)
This number needs to be added to the Nx value for any algorithm that
requires a sorted join index.
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